首页 > 专利 > 宁波大学 > 一种四氧化三钴纳米材料的制备方法专利详情

一种四氧化三钴纳米材料的制备方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2019-10-17
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2020-02-11
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2022-03-25
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2039-10-17
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201910997590.2 申请日 2019-10-17
公开/公告号 CN110683589B 公开/公告日 2022-03-25
授权日 2022-03-25 预估到期日 2039-10-17
申请年 2019年 公开/公告年 2022年
缴费截止日
分类号 C01G51/04B82Y40/00H01M4/52H01M10/0525 主分类号 C01G51/04
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 0
权利要求数量 1 非专利引证数量 0
引用专利数量 10 被引证专利数量 0
非专利引证
引用专利 CN105428644A、CN107673412A、CN102807256A、CN108217753A、CN105800698A、CN1962462A、CN102145923A、CN101811696A、WO2009008363A1、KR101738545B1 被引证专利
专利权维持 3 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 宁波大学 当前专利权人 宁波大学
发明人 李星、段利强 第一发明人 李星
地址 浙江省宁波市江北区风华路818号 邮编 315211
申请人数量 1 发明人数量 2
申请人所在省 浙江省 申请人所在市 浙江省宁波市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
北京风雅颂专利代理有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
李翔
摘要
本发明公开了一种四氧化三钴纳米材料的制备方法,本发明使用滤纸作为模板,经过沉积,干燥,烧结过程制备了具有特殊形貌的多孔薄片状Co3O4纳米材料,该纳米材料具有优异的电化学性能,其作为锂离子电池负极材料具有广阔的应用前景。在整个制备过程中,合成方法简单,易于操作,原料易得,设备投资少,适合批量生产。
  • 摘要附图
    一种四氧化三钴纳米材料的制备方法
  • 说明书附图:图1
    一种四氧化三钴纳米材料的制备方法
  • 说明书附图:图2
    一种四氧化三钴纳米材料的制备方法
  • 说明书附图:图3
    一种四氧化三钴纳米材料的制备方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2022-03-25 授权
2 2020-02-11 实质审查的生效 IPC(主分类): C01G 51/04 专利申请号: 201910997590.2 申请日: 2019.10.17
3 2020-01-14 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种四氧化三钴纳米材料作为锂离子电池负极材料的用途,其特征在于,所述四氧化三钴纳米材料的制备方法包括以下步骤:
1)称取一定量的乙酸钴溶于一定体积的无水乙醇中,然后超声30分钟,得到一定浓度的蓝色的乙酸钴溶液;
2)用适量的定量滤纸浸泡在上述的蓝色的乙酸钴溶液中24h;
3)将上述滤纸转移到氨水和水的混合溶液中,浸泡2h后,取出干燥,其中氨水和水的体积比为1:40;
4)将上述干燥后的滤纸置于坩埚内,然后将坩埚放置于马弗炉中,在空气氛围下600~
800℃烧结3~4h,然后自然降温至室温,得到一种四氧化三钴纳米材料;
所述的四氧化三钴纳米材料作为锂离子电池负极材料,在100mA/g的电流密度下,首次放电比容量大于1332mA h/g,循环50次后,其充放电比容量仍能保留998mA h/g以上,库伦效率在98%以上;
所述步骤1)中二价钴离子的浓度为20~60mmol/L;
所述反应的溶剂、试剂和原料均为化学纯。
说明书

技术领域

[0001] 本发明属于材料化学领域,具体涉及一种四氧化三钴纳米材料的制备方法。

背景技术

[0002] 锂离子电池因具有高功率密度,高能量密度,使用寿命长,价格低廉和体积轻便等特点,广泛应用于便携式电子设备(移动电话,笔记本电脑,照相机),并已广泛应用于电动汽车电池领域。传统的锂离子电池主要以石墨作为负极材料,它的理论比容量为372mAh/g,商用化电池可以达到330~340mAh/g。但是,随着社会的发展,石墨为负极的锂离子电池表征的比容量,已经逐渐不能满足人民的需求。自从2000年,Poizot等在《自然》杂志上报道了纳米尺度的过渡金属氧化物MO(M=Co、Fe、Ni或Cu)作为锂离子电池负极材料表现了优异的电化学性能,过渡金属氧化物就被认为是下一代负极材料的候选者,并被广泛研究。以Co3O4为例,研究发现其理论比容量为890mAh/g大约是石墨的两倍,具有非常高的可逆容量和容量保持率。但是,过渡金属氧化物具有非常差的导电性,初始循环过程产生的固体电解质界面(SEI)导致非常大的不可逆容量,关键之处是在于充放电循环过程中有非常大的体积变化,可能导致电极粉化,造成电池容量的衰减。解决这些问题的方法是合成具有特殊结构的物质,例如,多孔纳米片(L.Li,G.Jiang,R.Sun,B.Cao,New Journal of Chemistry,41(2017)15283‑15288);多孔纳米管(L.Liu,H.Guo,Y.Hou,J.Wang,L.Fu,J.Chen,H.Liu,J.Wang,Y.Wu,Journal of Materials Chemistry A,5(2017)14673‑14681)和多孔纳米线(J.Wang,L.Liu,S.Chou,H.Liu,J.Wang,Journal of Materials Chemistry A,5(2017)1462‑1471)等等。这些结构扩展了电解液和电极材料的接触面积,促进了电解液的渗透,从而提高了离子和电子的传输速率,所以电池的循环性能得到大幅度的改善。多孔的结构为电极材料提供了大量的自由空间,有效的缓解了其在充放电期间的体积膨胀。但是,制备此类材料的成本高昂,工艺复杂,技术要求比较高,在大规模生产和实际应用中受到很大的制约。因而需要研究探索此类材料的低成本的合成方法。

发明内容

[0003] 本发明所要解决的技术问题是针对现有技术,提供一种四氧化三钴纳米材料的制备方法。
[0004] 本发明为解决上述技术问题所采取的技术方案为:一种四氧化三钴(Co3O4)纳米材料的制备方法,所述制备方法采用模板法制备Co3O4纳米材料,具体包括以下步骤:
[0005] 1)称取一定量的乙酸钴溶于一定体积的无水乙醇中,然后超声30分钟,得到一定浓度的蓝色的乙酸钴溶液;
[0006] 2)用适量的定量滤纸浸泡在上述的蓝色的乙酸钴溶液中24h;
[0007] 3)将上述滤纸转移到氨水和水的混合溶液中,浸泡2h后,取出干燥,其中氨水和水的体积比为1:40;
[0008] 4)将上述干燥后的滤纸置于坩埚内,然后将坩埚放置于马弗炉中在空气氛围下600~800℃烧结3~4h,然后自然降温至室温,得到一种Co3O4纳米材料;
[0009] 所述Co(II)离子的浓度为20~60mmol/L;
[0010] 所述反应的溶剂、试剂或原料均为化学纯。
[0011] 将上述制备方法得到的四氧化三钴纳米材料作为锂离子电池负极材料,具有良好的电化学性能,在100mA/g的电流密度下,首次放电比容量大于1332mA h/g,循环50次后,其充放电比容量仍能保留998mA h/g以上,库伦效率在98%以上。
[0012] 与现有技术相比,本发明所制备的Co3O4纳米材料具有如下特点:
[0013] (a)本发明所制备的Co3O4纳米材料为多孔薄片状;(b)本发明所制备的Co3O4纳米材料作为锂离子电池负极材料具有良好的电化学性能,在100mA/g的电流密度下,首次放电比容量大于1332mA h/g,循环50次后,其充放电比容量仍能保留998mA h/g以上,库伦效率在98%以上。

实施方案

[0017] 以下结合实施例对本发明作进一步详细描述。
[0018] 实施例1
[0019] 称取1.0mmol(0.249g)g四水合乙酸钴溶于50mL的无水乙醇中,然后,超声30分钟,得到蓝色的乙酸钴溶液;将10张直径为10cm的定量滤纸放入上述的蓝色溶液中,浸泡24h;然后将滤纸转移到氨水(NH3·H2O)和水的混合溶液中(氨水和水的体积比为1:40),浸泡2h,取出滤纸在60℃鼓风干燥箱中进行干燥;将干燥后的滤纸置于坩埚内,将坩埚放置于马弗炉中在空气氛围下600℃烧结4h,然后自然降温至室温,得到一种棕黑色产品,将得到的产品进行粉末X射线衍射(XRD)测试分析,结果表明该产物是一种Co3O4纳米材料(图1);用扫描电镜(SEM)观测纳米材料的形貌,结果显示该纳米材料的形貌为多孔薄片状(图2);将得到的Co3O4纳米材料作为锂离子电池负极材料进行电化学性能测试分析,结果表明在100mA/g的电流密度下,材料首次放电比容量大于1332mA h/g,循环50次后,其充放电比容量仍能保留998mA h/g以上,库伦效率在98%以上(图3)。
[0020] 实施例2
[0021] 称取2.0mmol(0.489g)g四水合乙酸钴溶于50mL的无水乙醇中,然后,超声30分钟,得到蓝色的乙酸钴溶液;将10张直径为10cm的定量滤纸放入上述的蓝色溶液中,浸泡24h;然后将滤纸转移到氨水(NH3·H2O)和水的混合溶液中(氨水和水的体积比为1:40),浸泡2h,取出滤纸在60℃鼓风干燥箱中进行干燥;将干燥后的滤纸置于坩埚内,将坩埚放置于马弗炉中在空气氛围下800℃烧结3h,然后自然降温至室温,得到一种Co3O4纳米材料。用粉末X射线衍射(XRD)、扫描电镜(SEM)测试材料的组成结构和形貌;用蓝电系统等电化学测试仪测试材料的电化学性能。
[0022] 实施例3
[0023] 称取3.0mmol(0.747g)g四水合乙酸钴溶于50mL的无水乙醇中,然后,超声30分钟,得到蓝色的乙酸钴溶液;将10张直径为10cm的定量滤纸放入上述的蓝色溶液中,浸泡24h;然后将滤纸转移到氨水(NH3·H2O)和水的混合溶液中(氨水和水的体积比为1:40),浸泡2h,取出滤纸在60℃鼓风干燥箱中进行干燥;将干燥后的滤纸置于坩埚内,将坩埚放置于马弗炉中在空气氛围下700℃烧结3.5h,然后自然降温至室温,得到一种Co3O4纳米材料。用粉末X射线衍射(XRD)、扫描电镜(SEM)测试材料的组成结构和形貌;用蓝电系统等电化学测试仪测试材料的电化学性能。

附图说明

[0014] 图1为本发明制得的Co3O4纳米材料的XRD图;
[0015] 图2为本发明制得的Co3O4纳米材料的SEM图;
[0016] 图3为本发明制得的Co3O4纳米材料作为锂离子电池负极材料的充放电循环图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号