首页 > 专利 > 常州大学 > 自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法专利详情

自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2015-01-19
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2015-06-10
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2016-05-04
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2035-01-19
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201510026834.4 申请日 2015-01-19
公开/公告号 CN104609859B 公开/公告日 2016-05-04
授权日 2016-05-04 预估到期日 2035-01-19
申请年 2015年 公开/公告年 2016年
缴费截止日
分类号 C04B35/495C04B35/26C04B35/622C04B35/63C04B35/64 主分类号 C04B35/495
是否联合申请 独立申请 文献类型号 B
独权数量 2 从权数量 5
权利要求数量 7 非专利引证数量 0
引用专利数量 3 被引证专利数量 0
非专利引证
引用专利 CN102531595A、CN103588474A、CN102504759A 被引证专利
专利权维持 6 专利申请国编码 CN
专利事件 转让 事务标签 公开、实质审查、授权、权利转移
申请人信息
申请人 第一申请人
专利权人 常州大学 当前专利权人 江阴智产汇知识产权运营有限公司
发明人 方必军、刘星、杜庆柏、丁建宁 第一发明人 方必军
地址 江苏省常州市武进区滆湖路1号 邮编 213164
申请人数量 1 发明人数量 4
申请人所在省 江苏省 申请人所在市 江苏省常州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
常州市英诺创信专利代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
王美华、任晓岚
摘要
本发明属于磁电复合材料领域,提供一种自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,通过自蔓燃工艺分别在铁电相、铁磁相颗粒表面包覆纳米WO3、CuO,再将包覆后的铁电相和铁磁相混合均匀经固相烧结,即制得磁电复合陶瓷。本发明的优点:1)由于纳米烧结助剂的引入,能够低温烧结制备高密度的0-3颗粒复合陶瓷;2)有效阻止了铁电体、铁氧体之间的相互扩散,制备的0-3颗粒磁电复合陶瓷呈现较高的磁电耦合效应,具有较大的磁电耦合系数;3)工艺流程简单,成本低廉,适用于其他0-3颗粒磁电复合陶瓷的制备。
  • 摘要附图
    自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法
  • 说明书附图:图1
    自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法
  • 说明书附图:图2
    自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法
  • 说明书附图:图3
    自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法
  • 说明书附图:图4
    自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-02-09 专利权的转移 登记生效日: 2021.01.28 专利权人由常州大学变更为江阴智产汇知识产权运营有限公司 地址由213164 江苏省常州市武进区滆湖路1号变更为214400 江苏省无锡市江阴市澄江中路159号D501-3
2 2016-05-04 授权
3 2015-06-10 实质审查的生效 IPC(主分类): C04B 35/495 专利申请号: 201510026834.4 申请日: 2015.01.19
4 2015-05-13 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,其特征在于:
通过自蔓燃工艺分别在铁电相、铁磁相颗粒表面包覆纳米WO3、CuO,再将包覆后的铁电相和铁磁相混合均匀经固相烧结,即制得磁电复合陶瓷;
所述的在铁电相、铁磁相颗粒表面分别包覆纳米WO3、CuO的方法如下:
将钨盐溶于去离子水,将柠檬酸和CTAB溶于去离子水,将柠檬酸和CTAB溶液缓慢滴加至钨盐溶液中,再向混合溶液中加入铁电相,搅拌均匀,形成钨盐包覆铁电相的悬浮液,悬浮液干燥后,在280-320℃发生自蔓燃反应,得到纳米WO3包覆铁电相的粉体;
将铜盐溶于去离子水,将柠檬酸和EDTA溶于去离子水中,将柠檬酸和EDTA溶液缓慢滴加入上述铜盐溶液中,再向混合溶液中加入铁磁相,搅拌均匀,形成铜盐包覆铁磁相的悬浮液,悬浮液干燥后,在175-225℃发生自蔓燃反应,得到纳米CuO包覆铁磁相的粉体。
所述的包覆后的铁电相和铁磁相混合均匀后固相烧结具体步骤为:按照质量百分比铁电相:铁磁相=90-80:10-20称取纳米WO3包覆的铁电相粉体、纳米CuO包覆的铁磁相粉体,研磨、混合均匀,混合料干燥后,加入混合料总质量2wt%的聚乙烯醇(PVA)造粒,通过冷静压、在400MPa压力下压制成型,成型的陶瓷毛坯在空气气氛、875-900℃烧结2h制备得到0-3颗粒磁电复合陶瓷,烧结过程中,陶瓷毛坯四周覆盖同组成、4倍质量的铁电相原料混合物作为焙烧粉。

2.根据权利要求1所述的自蔓燃引入纳米烧结助剂低温烧结制备 0-3磁电复合陶瓷的方法,其特征在于:所述的铁电相包括Pb(Ni1/3Nb2/3)O3-PbHfO3-PbTiO3(PNNHT)、Pb(Ni1/
3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3(PNNZT)或Pb(Mg1/3Nb2/3)O3-PbTiO3(PMNT),所述的铁磁相包括镍锌铁氧体Ni0.94-0.88Zn0.06-0.12Fe2O4(NZF)或钴锌铁氧体Co0.92-0.88Zn0.08-0.12Fe2O4(CZF)。

3.根据权利要求2所述的自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,其特征在于:所述的铁电相和铁磁相的制备方法如下:
通过B位氧化物预合成法制备铁电相,按照化学计量比称取B位氧化物,研磨、混合均匀,1000-1100℃预烧2-4h;预烧产物破碎、粉磨,添加化学计量比的PbO,研磨、混合均匀,
800-900℃煅烧2-4h,得到铁电相;
通过固相反应法制备铁磁相,按照化学计量比称取氧化物原料,研磨、混合均匀,1125-
1175℃煅烧3-5h,得到铁磁相。

4.根据权利要求1或2所述的自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,其特征在于:所述铁电相为(0.6-0.5)Pb(Ni1/3Nb2/3)O3-0.05PbHfO3-(0.35-0.45)PbTiO3(PNNHT)、(0.63-0.53)Pb(Ni1/3Nb2/3)O3-0.02Pb(Zn1/3Nb2/3)O3-(0.35-0.45)PbTiO3(PNNZT)、(0.74-0.63)Pb(Mg1/3Nb2/3)O3-(0.26-0.37)PbTiO3(PMNT)。

5.根据权利要求1所述的自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,其特征在于:所述的钨盐物质的量为铁电 相物质的量的1.5-3.5%,所述柠檬酸与CTAB的质量比为8.5-9.5:1,所述的CTAB与铁电相和钨盐的质量之和的质量比为1:3.5-
4.5。

6.根据权利要求1所述的自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,其特征在于:所述的铜盐物质的量为铁磁相物质的量的1.5-3.5%,所述的柠檬酸与EDTA的质量比为3.5-4.5:1,所述的EDTA与铁磁相和铜盐的质量之和的质量比为1:1.8-
2.2。

7.根据权利要求1所述的自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,其特征在于:所述的钨盐为Na2WO4·2H2O,所述的铜盐为Cu(NO3)2·3H2O、CuCl2·2H2O或Cu(CH3COO)2·2H2O。
说明书

技术领域

[0001] 本发明属于磁电复合材料领域,尤其涉及一种低温烧结制备0-3铁电/铁磁颗粒复合陶瓷的方法。

背景技术

[0002] 多铁性材料(铁电性、铁磁性……)不但具备单一的铁性,而且通过铁性的耦合作用,产生新的复合效应。铁电/铁磁材料(磁电材料)是其中最典型的代表,这种材料不但具备铁电性、铁磁性,而且还产生一种新的性质――磁电耦合效应。多铁性材料大大拓宽了铁性材料的应用范围,能够实现磁-力-电或电-力-磁之间的能量转换,在磁-力-电转换器、磁传感器方面有着广泛的应用前景。
[0003] 单相磁电材料由于结构、对称性、电学特性等的特殊要求,种类很少(A.H.Nicola,Why are there so few magnetic ferroelectrics,J.Phys.Chem.B,2000,104:6694-6709)。同时,单相磁电材料由于Neel温度或Curie温度过低、本征磁电耦合效应较弱,无法在磁电领域获得应用(W.Eerenstein,N.D.Mathur,J.F.Scott,Multiferroic and magnetoelectric materials,Nature,2006,442:759-765;C.Nan,M.I.Bichurin,S.Dong,D.Viehland,G.Srinivasan,Multiferroic magnetoelectric composites:historical perspective,status,and future directions.Journal of Applied Physics,2008,103:
044101/1-35.)。
[0004] 在磁电领域有广泛应用价值的是磁电复合材料,磁电复合材料主要有颗粒磁电复合材料、层叠磁电复合材料两大类,每一种磁电复合材料都发展出了多种制备方法。相比较而言,通过传统的陶瓷工艺、烧结制备颗粒磁电复合陶瓷工艺简单、成本低廉,是制备磁电复合材料的一种有效方法。然而,为了获得较高的密度,固相反应法需要较高的烧结温度,导致烧结过程中铁电相、铁磁相之间严重的相互扩散,以至于制备的颗粒磁电复合陶瓷介电损耗偏大、形成导电通路、陶瓷难以极化,磁电性能不够理想(周剑平,何泓材,施展,南策文,PMNNT/CoFe2O4复合材料的结构和磁电性能,硅酸盐学报,2006,34(10):1213-1219;Y.J.Li,X.M.Chen,Y.Q.Lin,Y.H.Tang,Magnetoelectric effect of Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6composites,Journal of the European Ceramic Society,2006,26,2839-
2844)。因此,控制烧结温度是固相反应法制备颗粒磁电复合陶瓷的技术关键(Jungho Ryu,Alfredo Vázquez Carazo,Kenji Uchino,Hyoun-Ee Kim,Piezoelectric and 
magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate compositesm,Journal of Electroceramics,2001,7(1):17-24)。

发明内容

[0005] 本发明要解决的技术问题是:克服现有技术中传统固相烧结法铁电相与铁磁相之间相互扩散严重的不足,提供一种自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法。
[0006] 本发明解决该技术问题所采用的技术方案是:一种自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法,通过自蔓燃工艺分别在铁电相、铁磁相颗粒表面包覆纳米WO3、CuO,再将包覆后的铁电相和铁磁相混合均匀经固相烧结,即制得磁电复合陶瓷。
[0007] 进一步地,所述的铁电相包括Pb(Ni1/3Nb2/3)O3-PbHfO3-PbTiO3(PNNHT)、Pb(Ni1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3(PNNZT)、Pb(Mg1/3Nb2/3)O3-PbTiO3(PMNT)等,所述的铁磁相包括镍锌铁氧体Ni0.94-0.88Zn0.06-0.12Fe2O4(NZF)或钴锌铁氧体Co0.92-0.88Zn0.08-0.12Fe2O4(CZF)等。
[0008] 进一步地,所述的铁电相和铁磁相的制备方法如下:
[0009] 通过B位氧化物预合成法制备铁电相,按照化学计量比称取B位氧化物,研磨、混合均匀,1000-1100℃预烧2-4h;预烧产物破碎、粉磨,添加化学计量比的PbO,研磨、混合均匀,800-900℃煅烧2-4h,得到铁电相;
[0010] 以Pb(Ni1/3Nb2/3)O3-PbHfO3-PbTiO3(PNNHT)为例,按照化学计量比称取B位氧化物NiO、Nb2O5、HfO2和TiO2,研磨、混合均匀,1000-1100℃预烧2-4h;预烧产物破碎、粉磨,添加化学计量比的PbO,研磨、混合均匀,800-900℃煅烧2-4h,得到铁电相PNNHT;制备其他铁电相时预烧、煅烧温度、时间相应变化;
[0011] 通过固相反应法制备铁磁相,按照化学计量比称取氧化物,研磨、混合均匀,1125-1175℃煅烧3-5h,得到铁磁相;
[0012] 以Ni0.94-0.88Zn0.06-0.12Fe2O4(NZF)为例:按照化学计量比称取NiO、ZnO和Fe2O3,研磨、混合均匀,1125-1175℃煅烧3-5h,得到铁磁相NZF。
[0013] 作为优选,所述铁电相为(0.6-0.5)Pb(Ni1/3Nb2/3)O3-0.05PbHfO3-(0.35-0.45)PbTiO3(PNNHT)、(0.63-0.53)Pb(Ni1/3Nb2/3)O3-0.02Pb(Zn1/3Nb2/3)O3-(0.35-0.45)PbTiO3(PNNZT)或(0.74-0.63)Pb(Mg1/3Nb2/3)O3-(0.26-0.37)PbTiO3(PMNT)。
[0014] 具体地,所述的在铁电相、铁磁相颗粒表面包覆纳米WO3、CuO的方法如下:
[0015] 将钨盐溶于去离子水,将柠檬酸和CTAB溶于去离子水,将柠檬酸和CTAB溶液缓慢滴加至钨盐溶液中,再向混合溶液中加入铁电相,搅拌均匀,形成钨盐包覆铁电相的悬浮液,悬浮液干燥后,在280-320℃发生自蔓燃反应,得到纳米WO3包覆铁电相的粉体;
[0016] 将铜盐溶于去离子水,将柠檬酸和EDTA溶于去离子水中,将柠檬酸和EDTA溶液缓慢滴加入上述铜盐溶液中,再向混合溶液中加入铁磁相,搅拌均匀,形成铜盐包覆铁磁相的悬浮液,悬浮液干燥后,在175-225℃发生自蔓燃反应,得到纳米CuO包覆铁磁相的粉体。
[0017] 作为优选,所述的钨盐物质的量为铁电相物质的量的1.5-3.5%,所述柠檬酸与CTAB的质量比为8.5-9.5:1,所述的CTAB与铁电相和钨盐的质量之和的质量比为1:3.5-4.5。
[0018] 作为优选,所述的铜盐物质的量为铁磁相物质的量的1.5-3.5%,所述的柠檬酸与EDTA的质量比为3.5-4.5:1,所述的EDTA与铁磁相和铜盐的质量之和的质量比为1:1.8-2.2。
[0019] 具体地,所述的钨盐为Na2WO4·2H2O,作为优选,所述的铜盐为Cu(NO3)2·3H2O、CuCl2·2H2O或Cu(CH3COO)2·2H2O。
[0020] 进一步地,所述的包覆后的铁电相和铁磁相混合均匀后固相烧结具体步骤为:按照质量百分比铁电相:铁磁相=90-80:10-20称取纳米WO3包覆的铁电相粉体、纳米CuO包覆的铁磁相粉体,研磨、混合均匀,混合料干燥后,加入混合料总质量2wt%的聚乙烯醇(PVA)造粒,通过冷静压、在400MPa压力下压制成型,成型的陶瓷毛坯在空气气氛、875-900℃烧结2h制备得到0-3颗粒磁电复合陶瓷,烧结过程中,陶瓷毛坯四周覆盖同组成、4倍质量的铁电相原料混合物作为焙烧粉以减少烧结过程中铅的挥发。
[0021] 本发明的优点:1)由于纳米烧结助剂的引入,能够低温烧结制备高密度的0-3颗粒复合陶瓷;2)有效阻止了铁电体、铁氧体之间的相互扩散,制备的0-3颗粒磁电复合陶瓷呈现较高的磁电耦合效应,具有较大的磁电耦合系数;3)工艺流程简单,成本低廉,适用于其他0-3颗粒磁电复合陶瓷的制备。

实施方案

[0027] 实施例1
[0028] (1)按照化学计量比0.55Pb(Ni1/3Nb2/3)O3-0.05PbHfO3-0.4PbTiO3(PNNHT),称取B位氧化物NiO、Nb2O5、HfO2和TiO2,研磨、混合均匀,1100℃预烧4h;预烧产物破碎、粉磨,添加化学计量比的PbO,研磨、混合均匀,850℃煅烧4h,得到铁电相PNNHT。按照化学计量比Ni0.875Zn0.125Fe2O4(NZF),称取NiO、ZnO和Fe2O3,研磨、混合均匀,1150℃煅烧4h,得到铁磁相NZF。
[0029] (2)①称取一定质量的PNNHT铁电相。称取PNNHT物质的量的2.5mol%的Na2WO4·2H2O,放入去离子水中加热搅拌至完全溶解。称取柠檬酸和CTAB,柠檬酸与CTAB的质量比为
9:1,CTAB与PNNHT和二水钨酸钠的质量之和的质量比为1:4,放入去离子水中加热搅拌至完全溶解,将该溶液缓慢滴加入上述盐溶液中。混合溶液中加入PNNHT搅拌均匀,形成钨盐包覆铁电相的悬浮液。悬浮液干燥后,在300℃发生自蔓燃反应,得到纳米WO3包覆PNNHT的粉体。
[0030] ②称取一定质量的NZF铁磁相。称取NZF物质的量的2.5mol%的Cu(NO3)2·3H2O,放入去离子水中加热搅拌至完全溶解。称取柠檬酸和EDTA,柠檬酸与EDTA的质量比为4:1,EDTA与NZF和三水硝酸铜的质量之和的质量比为1:2,放入去离子水中加热搅拌至完全溶解,将该溶液缓慢滴加入上述盐溶液中。混合溶液中加入NZF搅拌均匀,形成铜盐包覆铁磁相的悬浮液。悬浮液干燥后,在200℃发生自蔓燃反应,得到纳米CuO包覆NZF的粉体。
[0031] (3)按照质量百分比PNNHT:NZF=85:15称取纳米WO3包覆的PNNHT粉体、纳米CuO包覆的NZF粉体,通过传统的湿法工艺研磨、混合均匀。混合料干燥后,加入总质量2wt%的聚乙烯醇(PVA)造粒,通过冷静压、在400MPa压力下压制成型。成型的陶瓷毛坯在空气气氛、600℃保温2h除碳;随后,在空气气氛、900℃烧结2h制备0.85PNNHT/0.15NZF颗粒磁电复合陶瓷。烧结过程中,陶瓷毛坯四周覆盖同组成、4倍质量的铁电相原料混合物作为焙烧粉以减少烧结过程中铅的挥发。
[0032] 为了验证引入了纳米烧结助剂,单独将Na2WO4·2H2O溶于去离子水,用柠檬酸和CTAB分散处理,在300℃发生自蔓燃反应,自蔓燃产物进一步在600℃煅烧2h,该热处理条件即为制备磁电复合陶瓷时烧结过程中的除碳条件。最终得到的WO3形貌用JEOL JSM6360LA Scanning Electron Microscopy(SEM,JEOL Ltd.,Japan)观察,SEM图见图1。从图1中可以看出,自蔓燃工艺制备的WO3粉体在经过排胶的600℃热处理2h后仍然保持纳米材料形态,从而能起到良好的促进烧结的作用,实现低温烧结制备高密度的0-3颗粒复合陶瓷。
[0033] 实施例1制备的PNNHT铁电相、NZF铁磁相和PNNHT/NZF 0-3颗粒磁电复合陶瓷的晶体结构用Rigaku D/max-2500/PC X-ray Diffractionmeter(XRD,Rigaku Corporation,Japan)测定,XRD衍射曲线见图2。PNNHT铁电相呈现钙钛矿结构,NZF铁磁相呈现尖晶石结构,PNNHT/NZF复合陶瓷中钙钛矿结构、尖晶石结构很好地共存,没有其他杂相和中间相存在。
[0034] PNNHT/NZF复合陶瓷的形貌用S-4800Field Emissiom Scanning Electron Microscope(FESEM,Hitachi Ltd.,Japan)观察,SEM图见图3。小颗粒铁磁相NZF较为均匀的分布在大颗粒铁电相PNNHT基体中,晶界清晰,形貌致密,能谱分析结果显示没有明显的扩散现象,表明自蔓燃工艺引入纳米烧结助剂实现了低温烧结制备颗粒磁电复合陶瓷,有效阻止了铁电体、铁氧体之间的相互扩散。
[0035] 图4给出PNNHT/NZF复合陶瓷的磁电耦合系数与磁场频率的关系。在200kHz以内,PNNHT/NZF复合陶瓷的磁电耦合系数稳定在~90mV/cm·Oe。随着磁场频率增加至接近铁电相径向伸缩振动谐振频率时,PNNHT/NZF复合陶瓷的磁电耦合系数出现最大值212mV/cm·Oe,比目前报道的其他工艺制备的颗粒磁电复合陶瓷大得多。上述结果表明,通过自蔓燃工艺引入纳米烧结助剂WO3、CuO,同时起到了烧结助剂和阻挡层的作用,能够低温烧结制备高密度、高性能的0-3颗粒磁电复合陶瓷。该发明工艺流程简单,成本低廉,适用于其他0-3颗粒磁电复合陶瓷的制备。
[0036] 实施例2
[0037] 改变实施例1中PNNHT材料的计量比为0.6Pb(Ni1/3Nb2/3)O3-0.05PbHfO3-0.35PbTiO3(PNNHT),改变实施例1中NZF材料的计量比为Ni0.88Zn0.12Fe2O4,采用与实施例1相同的方法制备铁电相、铁磁相和PNNHT/NZF复合陶瓷。
[0038] 实施例3
[0039] 改变实施例1中PNNHT材料的计量比为0.5Pb(Ni1/3Nb2/3)O3-0.05PbHfO3-0.45PbTiO3(PNNHT),改变实施例1中NZF材料的计量比为Ni0.94Zn0.06Fe2O4,采用与实施例1相同的方法制备铁电相和铁磁相,并改变铁电相和铁磁相比例为90:10采用与实施例1相同的方法制备PNNHT/NZF复合陶瓷。
[0040] 实施例4
[0041] (1)按照化学计量比0.58Pb(Ni1/3Nb2/3)O3-0.02Pb(Zn1/3Nb2/3)O3-0.4PbTiO3(PNNZT),称取B位氧化物NiO、Nb2O5、ZnO和TiO2,研磨、混合均匀,1000℃预烧4h;预烧产物破碎、粉磨,添加化学计量比的PbO,研磨、混合均匀,875℃煅烧2h,得到铁电相PNNZT。按照化学计量比Co0.9Zn0.1Fe2O4(CZF),称取CoO、ZnO和Fe2O3,研磨、混合均匀,1175℃煅烧3h,得到铁磁相CZF。
[0042] (2)①称取一定质量的PNNZT铁电相。称取PNNZT物质的量的3mol%的Na2WO4·2H2O,放入去离子水中加热搅拌至完全溶解。称取柠檬酸和CTAB,柠檬酸与CTAB的质量比为
9.5:1,CTAB与PNNZT和二水钨酸钠的质量之和的质量比为1:3.8,放入去离子水中加热搅拌至完全溶解,将该溶液缓慢滴加入上述盐溶液中。混合溶液中加入PNNZT搅拌均匀,形成钨盐包覆铁电相的悬浮液。悬浮液干燥后,在310℃发生自蔓燃反应,得到纳米WO3包覆PNNZT的粉体。
[0043] ②称取一定质量的CZF铁磁相。称取CZF物质的量的3.5mol%的Cu(NO3)2·3H2O,放入去离子水中加热搅拌至完全溶解。称取柠檬酸和EDTA,柠檬酸与EDTA的质量比为4.5:1,EDTA与CZF和三水硝酸铜的质量之和的质量比为1:1.9,放入去离子水中加热搅拌至完全溶解,将该溶液缓慢滴加入上述盐溶液中。混合溶液中加入CZF搅拌均匀,形成铜盐包覆铁磁相的悬浮液。悬浮液干燥后,在185℃发生自蔓燃反应,得到纳米CuO包覆CZF的粉体。
[0044] (3)按照质量百分比PNNZT:CZF=80:20称取纳米WO3包覆的PNNZT粉体、纳米CuO包覆的CZF粉体,通过传统的湿法工艺研磨、混合均匀。混合料干燥后,加入总质量2wt%的聚乙烯醇(PVA)造粒,通过冷静压、在400MPa压力下压制成型。成型的陶瓷毛坯在空气气氛、600℃保温2h除碳;随后,在空气气氛、900℃烧结2h制备0.8PNNZT/0.2CZF颗粒磁电复合陶瓷。烧结过程中,陶瓷毛坯四周覆盖同组成、4倍质量的铁电相原料混合物作为焙烧粉以减少烧结过程中铅的挥发。
[0045] 实施例5
[0046] 改变实施例4中PNNZT材料的计量比为0.63Pb(Ni1/3Nb2/3)O3-0.02Pb(Zn1/3Nb2/3)O3-0.35PbTiO3,改变实施例4中CZF材料的计量比为Co0.92Zn0.08Fe2O4,采用与实施例4相同的方法制备铁电相、铁磁相和PNNZT/CZF复合陶瓷。
[0047] 实施例6
[0048] 改变实施例4中PNNZT材料的计量比为0.53Pb(Ni1/3Nb2/3)O3-0.02Pb(Zn1/3Nb2/3)O3-0.45PbTiO3,改变实施例4中CZF材料的计量比为Co0.88Zn0.12Fe2O4,采用与实施例4相同的方法制备铁电相、铁磁相和PNNZT/CZF复合陶瓷。
[0049] 实施例7
[0050] (1)按照化学计量比0.69Pb(Mg1/3Nb2/3)O3-0.31PbTiO3(PMNT),称取B位氧化物MgO、Nb2O5和TiO2,研磨、混合均匀,1050℃预烧4h;预烧产物破碎、粉磨,添加化学计量比的PbO,研磨、混合均匀,825℃煅烧2h,得到铁电相PMNT。按照化学计量比Co0.9Zn0.1Fe2O4(CZF),称取CoO、ZnO和Fe2O3,研磨、混合均匀,1175℃煅烧3h,得到铁磁相CZF。
[0051] (2)①称取一定质量的PMNT铁电相。称取PMNT物质的量的2.75mol%的Na2WO4·2H2O,放入去离子水中加热搅拌至完全溶解。称取柠檬酸和CTAB,柠檬酸与CTAB的质量比为
9:1,CTAB与PMNT和二水钨酸钠的质量之和的质量比为1:4,放入去离子水中加热搅拌至完全溶解,将该溶液缓慢滴加入上述盐溶液中。混合溶液中加入PMNT搅拌均匀,形成钨盐包覆铁电相的悬浮液。悬浮液干燥后,在300℃发生自蔓燃反应,得到纳米WO3包覆PMNT的粉体。
[0052] ②称取一定质量的CZF铁磁相。称取CZF物质的量的3mol%的Cu(CH3COO)2·2H2O,放入去离子水中加热搅拌至完全溶解。称取柠檬酸和EDTA,柠檬酸与EDTA的质量比为4:1,EDTA与CZF和二水醋酸铜的质量之和的质量比为1:1.8,放入去离子水中加热搅拌至完全溶解,将该溶液缓慢滴加入上述盐溶液中。混合溶液中加入CZF搅拌均匀,形成铜盐包覆铁磁相的悬浮液。悬浮液干燥后,在175℃发生自蔓燃反应,得到纳米CuO包覆CZF的粉体。
[0053] (3)按照质量百分比PMNT:CZF=85:15称取纳米WO3包覆的PMNT粉体、纳米CuO包覆的CZF粉体,通过传统的湿法工艺研磨、混合均匀。混合料干燥后,加入总质量2wt%的聚乙烯醇(PVA)造粒,通过冷静压、在400MPa压力下压制成型。成型的陶瓷毛坯在空气气氛、600℃保温2h除碳;随后,在空气气氛、875℃烧结2h制备0.85PMNT/0.15CZF颗粒磁电复合陶瓷。烧结过程中,陶瓷毛坯四周覆盖同组成、4倍质量的铁电相原料混合物作为焙烧粉以减少烧结过程中铅的挥发。
[0054] 实施例8
[0055] 改变实施例7中PMNT材料的计量比为0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3,采用与实施例7相同的方法制备铁电相、铁磁相和PMNT/CZF复合陶瓷。
[0056] 实施例9
[0057] 改变实施例7中PMNT材料的计量比为0.63Pb(Mg1/3Nb2/3)O3-0.37PbTiO3,采用与实施例7相同的方法制备铁电相、铁磁相和PMNT/CZF复合陶瓷。
[0058] 经试验证明,实施例2~9制备的PNNHT/NZF、PNNZT/CZF、PMNT/CZF 0-3颗粒磁电复合陶瓷室温下的磁电耦合系数最大值也都超过200mV/cm·Oe。
[0059] 另外,其他0-3颗粒磁电复合陶瓷制备机理相同时,本领域技术人员根据本发明公开的内容应当能够知晓本发明方法还适用于其他0-3颗粒磁电复合陶瓷。
[0060] 对比例1
[0061] 采用传统的固相烧结方法制备含有烧结助剂的铁电相和铁磁相:称取与实施例1等计量比的WO3与原料B位氧化物NiO、Nb2O5、HfO2和TiO2,共同研磨、混合均匀,1100℃预烧4h,预烧产物破碎、粉磨,添加化学计量比的PbO,研磨、混合均匀,850℃煅烧4h,得到含有烧结助剂的铁电相PNNHT。称取与实施例1计量比的CuO、NiO、ZnO和Fe2O3,研磨、混合均匀,1150℃煅烧4h,得到含有烧结助剂的铁磁相NZF。
[0062] 按照传统的固相烧结方法,称取与实施例1中等比例的含有烧结助剂的铁电相PNNHT和含有烧结助剂的铁磁相NZF,通过传统的湿法工艺研磨、混合均匀。混合料干燥后,加入总质量2wt%的聚乙烯醇(PVA)造粒,通过冷静压、在400MPa压力下压制成型。成型的陶瓷毛坯在空气气氛、600℃保温2h除碳;随后,在空气气氛、900℃烧结2h制备0.85PNNHT/0.15NZF颗粒磁电复合陶瓷。烧结过程中,陶瓷毛坯四周覆盖同组成、4倍质量的铁电相原料混合物作为焙烧粉以减少烧结过程中铅的挥发。
[0063] 对比例2
[0064] 将实施例1步骤(3)中铁电相WO3包覆的PNNHT粉体替换为没有WO3包覆的PNNHT粉体,其他条件同实施例1,制备得到0.85PNNHT/0.15NZF颗粒磁电复合陶瓷。
[0065] 对比例3
[0066] 将实施例1步骤(3)中铁磁相CuO包覆的NZF的粉体替换为没有CuO包覆的NZF粉体,其他条件同实施例1,制备得到0.85PNNHT/0.15NZF颗粒磁电复合陶瓷。
[0067] 对比例4
[0068] 将实施例1步骤(2)①中的Na2WO4·2H2O替换为等物质的量的CuO,将步骤②中的Cu(NO3)2·3H2O替换为等物质的量的WO3,其他条件同实施例1,最终制备得到0.85PNNHT/0.15NZF颗粒磁电复合陶瓷。
[0069] 对比例1中使用的烧结助剂WO3、CuO通常为微米级的原料、加上固相反应难以制备混合均匀的配合料;进一步地,对比例2、3分别只在铁电相、铁磁相中添加烧结助剂,制备复合陶瓷时致密化效果明显降低;进一步地,对比例4将WO3、CuO使用的对象颠倒,不仅不能起到烧结助剂的作用,还会使得复合陶瓷的导电性增强,极化变得困难。因此,对比例1-4制备的0-3颗粒磁电复合陶瓷的磁电耦合系数远小于50mV/cm·Oe。经试验证明,若将实施例2~9的方法做出与对比例1~4相同改变,最终制得的0-3颗粒磁电复合陶瓷密度降低严重,磁电耦合系数也远小于50mV/cm·Oe。

附图说明

[0022] 下面结合附图和实施例对本发明进一步说明。
[0023] 图1 300℃自蔓燃、600℃煅烧的烧结助剂的SEM图;
[0024] 图2实施例1制备的PNNHT/NZF 0-3颗粒磁电复合陶瓷的XRD图;
[0025] 图3实施例1制备的PNNHT/NZF复合陶瓷的SEM图;
[0026] 图4实施例1制备的PNNHT/NZF复合陶瓷的磁电耦合系数与频率的关系。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号