首页 > 专利 > 宁波大学 > 一种基于最优近邻成分分析的质量软测量与监测方法专利详情

一种基于最优近邻成分分析的质量软测量与监测方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2018-10-09
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2019-03-22
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2021-09-10
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2038-10-09
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201811220917.7 申请日 2018-10-09
公开/公告号 CN109389314B 公开/公告日 2021-09-10
授权日 2021-09-10 预估到期日 2038-10-09
申请年 2018年 公开/公告年 2021年
缴费截止日
分类号 G06Q10/06G06F16/2458 主分类号 G06Q10/06
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 0
权利要求数量 1 非专利引证数量 0
引用专利数量 0 被引证专利数量 0
非专利引证
引用专利 被引证专利
专利权维持 4 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 宁波大学 当前专利权人 宁波大学
发明人 宋励嘉、童楚东、俞海珍 第一发明人 宋励嘉
地址 浙江省宁波市江北区风华路818号信息学院 邮编 315211
申请人数量 1 发明人数量 3
申请人所在省 浙江省 申请人所在市 浙江省宁波市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
摘要
本发明公开一种基于最优近邻成分分析的质量软测量与监测方法,旨在解决如何从保证全局最优的角度优选出与各个质量指标相关的输入特征变量,并基于此建立相应的质量指标软测量与监测模型。本发明方法考虑了各个质量指标会对应不同的输入特征变量的问题,通过穷举输入变量所有的可能组合形式,再根据近邻成分分析算法的目标函数值来确定各个质量指标所对应的最优输入特征变量。本发明方法利用优选后的输入变量为各个质量指标建立软测量模型,并利用软测量模型的估计值实时监测产品质量的状况,本发明方法可以说能较好地解决与产品质量相关的软测量与监测问题。
  • 摘要附图
    一种基于最优近邻成分分析的质量软测量与监测方法
  • 说明书附图:图1
    一种基于最优近邻成分分析的质量软测量与监测方法
  • 说明书附图:图2
    一种基于最优近邻成分分析的质量软测量与监测方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2021-09-10 授权
2 2019-03-22 实质审查的生效 IPC(主分类): G06Q 10/06 专利申请号: 201811220917.7 申请日: 2018.10.09
3 2019-02-26 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种基于最优近邻成分分析的质量软测量与监测方法,其特征在于,包括以下步骤:
首先,离线建模阶段包括如下所示步骤(1)至步骤(13);
步骤(1):从生产过程对象的历史数据库中找出能反映产品质量的指标所对应的数据n×k n×m
组成输出矩阵Y∈R ,与输出Y相对应的采样数据组成输入矩阵X∈R ,其中,n为训练样n×m
本数,m为过程测量变量数,k为质量指标数,R为实数集,R 表示n×m维的实数矩阵;
步骤(2):计算输出矩阵Y中各列向量的均值μ1,μ2,…,μk与标准差δ1,δ2,…,δk后,按照公式 对Y中各行向量实施标准化处理得到输出矩阵 其中行向量y与
分别表示矩阵Y与 中的各个行向量,输出均值向量μ=[μ1,μ2,…,μk]、输出标准差对角矩阵中对角线上的元素为δ1,δ2,…,δk;
步骤(3):对矩阵X实施标准化处理,得到标准化后的输入矩阵 并初始化γ=
1;
n×1
步骤(4):将输出矩阵 中的第γ列的列向量单独作为向量zγ∈R 后,初始化c=1并根据如下所示公式初始化一条长度为m的二进制数b:
1×m
步骤(5):将二进制数b对应地赋值给行向量wc∈R 中的各个元素,并根据如下所示公式计算矩阵 中第i行向量xi与第j行向量xj之间的加权距离Dw(xi,xj):
Dw(xi,xj)=||(xi‑xj)diag(wc)||  (2)
上式中,i=1,2,…,n,j=1,2,…,n,diag(wc)表示将向量wc转变为一个对角矩阵,符号|| ||表示计算向量的长度;
步骤(6):根据如下所示公式计算向量xi与向量xj相近的概率pij:
步骤(7):根据如下所示公式计算向量xi将向量xj所对应的输出值zγ,j作为估计输出的概率误差pi:
上式中,zγ,i与zγ,j分别为向量zγ中的第i个元素与第j个元素;
步骤(8):根据公式Jc=p1+p2+…+pn计算在当前向量wc条件下的近邻成分分析目标函数m‑1 m‑2 0
值Jc后,判断c是否小于C;其中C=2 +2 +…+2 ,若是,则置c=c+1与b=b+1后返回步骤(5);若否,则得到输入变量所有组合形式所对应的近邻成分分析目标函数值J1,J2,…,JC;
步骤(9):找出J1,J2,…,JC中的最小值,并确定出该最小值所对应的向量wc,那么与第γ个输出质量指标相关的最优输入变量即为该向量wc中元素1所对应的变量,并将其记录为输入特征变量集合Θγ;
步骤(10):根据集合Θγ中存储的变量从矩阵 中选出对应的列向量组成与第γ个质量指标相关的矩阵
步骤(11):建立输入相关矩阵 与第γ个质量指标zγ之间的软测量模型:
其中fγ( )表示软测量模型拟合出的函数关系,Eγ为预测误差,根据应用
对象的不同,可用算法有偏最小二乘回归、神经网络、支持向量回归;
步骤(12):根据公式 计算出软测量模型的输出估计值 后,判断γ是否小于
k;若是,则置γ=γ+1后返回步骤(4);若否,则将 组成矩阵 后,计
算 的协方差矩阵 上标号T表示矩阵或向量的转置;
步骤(13):根据公式 计算出质量指标的监测上限Dlim,其中 表示自由度为
k、置信限为α=99%的卡方分布所对应的取值;
其次,离线建模阶段完成后,实施如下所示步骤(14)至步骤(19)的在线质量指标的软测量与监测;
1×m
步骤(14):采集新时过程对象的样本数据x∈R ,对其实施步骤(3)中与矩阵X相同的标准化处理得到向量 并初始化γ=1;
步骤(15):根据集合Θγ从行向量 中选出相应的列组成行向量
步骤(16):根据公式 计算出当前采样时刻的第γ个软测量模型的输出 并
根据公式 计算当前采样时刻第γ个质量指标数据θγ;
步骤(17):判断γ是否小于k;若是,则置γ=γ+1后返回步骤(15);若否,则将得到的软测量模型输出 组成行向量
步骤(18):根据如下所示公式计算与质量指标的监测统计量D:
‑1 T
D=φΞ φ  (5)
步骤(19):若D≤Dlim,则当前采样时刻质量指标未出现异常,返回步骤(14)继续实施对下一个采样时刻的质量指标软测量与监测;若D>Dlim,则过程对象运行出现了与质量相关的故障。
说明书

技术领域

[0001] 本发明涉及一种软测量与监测方法,特别涉及一种基于最优近邻成分分析的质量软测量与监测方法。

背景技术

[0002] 在整个综合自动化系统中,实时监测产品质量的系统占有着很重要的地位,产品的质量是过程运行时主要考虑的因素。随着科学技术的飞速发展,虽然诸如温度、压力、流量等信息的测量仪表在现代工业过程中得到了广泛的应用,但是直接测量产品质量指标的在线分析仪价格依旧高昂,而且后期维护成本很高。以产品的浓度这个质量指标为例,测量浓度成分的在线分析仪价格就是普通测量温度、压力等仪表的十几倍,而且后期还需人工定期维护。若因成本原因不采用在线分析仪实时获取质量数据,可通过离线采样分析的手段获取产品质量数据。但是,离线测量的产品质量数据存在较大延时,不能为实时监测质量信息提供时间上的保障。
[0003] 在这个背景下,软测量技术就应运而生,通过建立过程测量数据与产品质量数据之间的输入‑输出关系模型,从而可实现对产品质量的软测量。建立软测量模型的方法有很多种,如偏最小二乘回归、神经网络、支持向量回归等等。这其中,偏最小二乘回归及其相应的衍生算法是最基本也是最常用的软测量实施技术手段。然而,过程测量数据中并非所有测量变量对预测产品质量是有作用的,而且某些测量变量的异常变化不会对质量造成影响。因此,有效地挖掘出与质量指标相关的测量变量,对于后续建立软测量与监测模型是有积极作用的。在目前的科研文献与专利中,存在一些变量选择或特征选择的方法。以偏最小二乘回归算法为例,有通过相关性确定与质量相关联的输入变量,也有通过遗传算法优选出最佳的输入特征变量用于构建回归模型。通过相关性虽能找出与输出质量指标相关的输入变量,但是无法从提升回归模型预测精度的角度选择输入变量。利用遗传算法优选出输入变量虽能提升回归模型的精度,但是遗传算法有个总所周知的问题,即容易陷入局部最优。可以说,质量软测量与质量相关的监测问题还值得进一步的研究。
[0004] 近年来,有学者提出近邻成分分析(Neighborhood Component Analysis,NCA)算法,可适用于分类问题与回归问题的输入变量选择。NCA算法的求解过程实际为一个优化过程,经典NCA的优化过程是通过牛顿法来实施的,是否会陷入局部极小跟初始值的选取有很大关系。此外,虽然现有专利文献中有使用粒子群算法或差分进化算法来优化求解NCA算法,但是这些智能优化算法无可避免地同样会陷入局部极小问题。可以说,利用NCA算法为输入找出的特征变量不是最优的,可能会出现遗漏或者多选的情况发生。这对于建立软测量模型以及与质量相关的故障监测模型是很不利的。此外,不同的质量指标会与不同的输入变量相关联,在实施输入变量特征选择时需要考虑到各质量变量之间的差异性,而不能直接为所有的质量指标优选出相同的输入特征变量。

发明内容

[0005] 本发明所要解决的主要技术问题是:如何从保证全局最优的角度最优地选择出与各个质量指标相关的输入特征变量,并基于此建立相应的质量指标软测量与故障监测模型。
[0006] 本发明方法解决上述问题所采用的技术方案为:一种基于最优近邻成分分析的质量软测量与监测方法,包括以下步骤:
[0007] (1):从生产过程对象的历史数据库中找出能反映产品质量的指标所对应的数据n×k n×m组成输出矩阵Y∈R ,与输出Y相对应的采样数据组成输入矩阵X∈R ,其中,n为训练样n×m
本数,m为过程测量变量数,k为质量指标数,R为实数集,R 表示n×m维的实数矩阵。
[0008] (2):计算输出矩阵Y中各列向量的均值μ1,μ2,…,μk与标准差δ1,δ2,…,δk后,按照公式 对Y中各行向量实施标准化处理得到输出矩阵 其中行向量y与分别表示矩阵Y与 中的各个行向量,输出均值向量μ=[μ1,μ2,…,μk]、输出标准差对角矩阵 中对角线上的元素为δ1,δ2,…,δk。
[0009] (3):对矩阵X实施标准化处理,得到标准化后的输入矩阵 并初始化γ=1。
[0010] (4):将输出矩阵 中的第γ列的列向量单独作为向量zγ∈Rn×1后,初始化c=1并根据如下所示公式初始化一条长度为m的二进制数b:
[0011]
[0012] (5):将二进制数b对应地赋值给行向量wc∈R1×m中的各个元素,并根据如下所示公式计算矩阵 中第i行向量xi与第j行向量xj之间的加权距离Dw(xi,xj):
[0013] Dw(xi,xj)=||(xi‑xj)diag(wc)||    (2)
[0014] 上式中,i=1,2,…,n,j=1,2,…,n,diag(wc)表示将向量wc转变为一个对角矩阵,符号|| ||表示计算向量的长度。
[0015] (6):根据如下所示公式计算向量xi与向量xj相近的概率pij:
[0016]
[0017] (7):根据如下所示公式计算向量xi将向量xj所对应的输出值zγ,j作为估计输出的概率误差pi:
[0018]
[0019] 上式中,zγ,i与zγ,j分别为向量zγ中的第i个元素与第j个元素。
[0020] (8):根据公式Jc=p1+p2+…+pn计算在当前向量wc条件下的近邻成分分析目标函数m‑1 m‑2 0值Jc后,判断是否满足条件:c<C?其中C=2 +2 +…+2 ,若是,则置c=c+1与b=b+1后返回步骤(4);若否,则得到输入变量所有组合形式所对应的近邻成分分析目标函数值J1,J2,…,JC。
[0021] (9):找出J1,J2,…,JC中的最小值,并确定出该最小值所对应的向量wc,那么与第γ个输出质量指标相关的最优输入变量即为该向量wc中元素1所对应的变量,并将其记录为输入特征变量集合Θγ。
[0022] (10):根据集合Θγ中存储的变量从矩阵 中选出对应的列向量组成与第γ个质量指标相关的矩阵
[0023] (11):建立输入相关矩阵 与第γ个质量指标zγ之间的软测量模型:其中fγ()表示软测量模型拟合出的函数关系,Eγ为预测误差,根据应用对象的不同,可用算法有偏最小二乘回归、神经网络、支持向量回归。
[0024] (12):根据公式 计算出软测量模型的输出估计值 后,判断是否满足条件:γ<k?若是,则置γ=γ+1后返回步骤(4);若否,则将 组成矩阵
后,计算 的协方差矩阵 上标号T表示矩阵或向量的转置。
[0025] (13):根据公式 计算出质量指标的监测上限Dlim,其中 表示自由度为k、置信限为α=99%的卡方分布所对应的取值,可查概率表获取。
[0026] 本发明方法的离线建模阶段包括上述步骤(1)至步骤(13),当过程对象测量到新的样本数据时,即开始实施如下所示的在线软测量与监测。
[0027] (14):采集新时过程对象的样本数据x∈R1×m,对其实施步骤(3)中与矩阵X相同的标准化处理得到向量 并初始化γ=1。
[0028] (15):根据集合Θγ从行向量 中选出相应的列组成行向量
[0029] (16):根据公式 计算出当前采样时刻的第γ个软测量模型的输出 并根据公式 计算当前采样时刻第γ个质量指标数据θγ。
[0030] (17):判断是否满足条件:γ<k?若是,则置γ=γ+1后返回步骤(15);若否,则将得到的软测量模型输出 组成行向量
[0031] (18):根据如下所示公式计算与质量指标的监测统计量D:
[0032] D=φΞ‑1φT    (5)
[0033] (19):若D≤Dlim,则当前采样时刻质量指标未出现异常,返回步骤(14)继续实施对下一个采样时刻的质量指标软测量与监测;若D>Dlim,则过程对象运行出现了与质量相关的故障。
[0034] 与现有软测量与监测方法相比,本发明方法的优点在于:
[0035] 首先,本发明方法考虑到了各个质量指标的差异性,为各个质量指标单独的优选出输入特征变量。其次,本发明方法通过穷举输入变量所有的可能组合形式,再根据近邻成分分析算法的目标函数值来确定最优的输入特征变量,绝对能保证与质量指标相关的输入变量的全局最优性,避免了局部最优的问题。再者,本发明方法利用优选后的输入变量为各个质量指标建立软测量模型,能剔除与质量指标不相关测量数据的干扰影响。由于本发明方法不仅实施了对质量指标的软测量,而且还能依据软测量值实施对质量指标的实时监测,本发明方法可以说能较好地解决与产品质量相关的软测量与监测问题。

实施方案

[0038] 下面结合附图和具体实施方式对本发明进行详细说明。
[0039] 如图1所示,本发明公开了一种基于最优近邻成分分析的质量软测量与监测方法,该方法的具体实施方式如下所示。
[0040] 首先,离线建模阶段包括如下所示步骤(1)至步骤(13)。
[0041] 步骤(1):从生产过程对象的历史数据库中找出能反映产品质量的指标所对应的n×k n×m数据组成输出矩阵Y∈R ,与输出Y相对应的采样数据组成输入矩阵X∈R 。
[0042] 步骤(2):计算输出矩阵Y中各列向量的均值μ1,μ2,…,μk与标准差δ1,δ2,…,δk后,按照公式 对Y中各行向量实施标准化处理得到输出矩阵 其中行向量y与 分别表示矩阵Y与 中的各个行向量,输出均值向量μ=[μ1,μ2,…,μk]、输出标准差对角矩阵 中对角线上的元素为δ1,δ2,…,δk;
[0043] 步骤(3):对矩阵X实施标准化处理,得到 并初始化γ=1。
[0044] 接下来需要利用最优近邻成分分析算法优选出与各个质量指标相关的输入特征变量,相应的实施流程如图2所示,包括如下所示步骤(4)至步骤(9)。n×1
[0045] 步骤(4):将输出矩阵 中的第γ列的列向量单独作为向量zγ∈R 后,初始化c=1并根据如下所示公式初始化一条长度为m的二进制数b:
[0046]
[0047] 步骤(5):将二进制数b对应地赋值给行向量wc∈R1×m中的各个元素,并根据如下所示公式计算矩阵 中第i行向量xi与第j行向量xj之间的加权距离Dw(xi,xj):
[0048] Dw(xi,xj)=||(xi‑xj)diag(wc)||    (7)
[0049] 步骤(6):根据如下所示公式计算向量xi与向量xj相近的概率pij:
[0050]
[0051] 步骤(7):根据如下所示公式计算向量xi将向量xj所对应的输出值zγ,j作为估计输出的概率误差pi:
[0052]
[0053] 上式中,zγ,i与zγ,j分别为向量zγ中的第i个元素与第j个元素。
[0054] 步骤(8):根据公式Jc=p1+p2+…+pn计算在当前向量wc条件下的近邻成分分析目标m‑1 m‑2 0函数值Jc后,判断是否满足条件:c<C?其中C=2 +2 +…+2 ,若是,则置c=c+1与b=b+1后返回步骤(4);若否,则得到输入变量所有组合形式所对应的近邻成分分析目标函数值J1,J2,…,JC。
[0055] 步骤(9):找出J1,J2,…,JC中的最小值,并确定出该最小值所对应的向量wc,那么与第γ个输出质量指标相关的最优输入变量即为该向量wc中元素1所对应的变量,并将其记录为输入特征变量集合Θγ。
[0056] 步骤(10):根据集合Θγ中存储的变量从矩阵 中选出对应的列向量组成与第γ个质量指标相关的矩阵
[0057] 步骤(11):建立输入相关矩阵 与第γ个质量指标zγ之间的软测量模型:其中fγ()表示软测量模型拟合出的函数关系,Eγ为预测误差,根据应用对
象的不同,可用算法有偏最小二乘回归、神经网络、支持向量回归。
[0058] 步骤(12):根据公式 计算出软测量模型的输出估计值 后,判断是否满足条件:γ<k?若是,则置γ=γ+1后返回步骤(4);若否,则将 组成矩阵
后,计算 的协方差矩阵
[0059] 步骤(13):根据公式 计算出质量指标的监测上限Dlim,其中 表示自由度为k、置信限为α=99%的卡方分布所对应的取值,可查概率表获取
[0060] 其次,离线建模阶段完成后,当过程对象测量到新的样本数据时,即开始实施如下所示的在线质量指标预测与监测,包括如下所示步骤(14)至步骤(19)。
[0061] 步骤(13):根据公式 计算出质量指标的监测上限Dlim,其中 表示自由度为k、置信限为α=99%的卡方分布所对应的取值,可查概率表获取;
[0062] 其次,离线建模阶段完成后,实施如下所示步骤(14)至步骤(19)的在线质量指标的软测量与监测。
[0063] 步骤(14):采集新时过程对象的样本数据x∈R1×m,对其实施步骤(3)中与矩阵X相同的标准化处理得到向量 并初始化γ=1。
[0064] 步骤(15):根据集合Θγ从行向量 中选出相应的列组成行向量
[0065] 步骤(16):根据公式 计算出当前采样时刻的第γ个软测量模型的输出并根据公式 计算当前采样时刻第γ个质量指标数据θγ。
[0066] 步骤(17):判断是否满足条件:γ<k?若是,则置γ=γ+1后返回步骤(15);若否,则将得到的软测量模型输出 组成行向量
[0067] 步骤(18):根据如下所示公式计算与质量指标的监测统计量D:
[0068] D=φΞ‑1φT    (5)
[0069] 步骤(19):若D≤Dlim,则当前采样时刻质量指标未出现异常,返回步骤(14)继续实施对下一个采样时刻的质量指标软测量与监测;若D>Dlim,则过程对象运行出现了与质量相关的故障。

附图说明

[0036] 图1为本发明方法的实施流程示意图。
[0037] 图2为本发明方法中最优近邻成分分析算法的实施流程图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号