首页 > 专利 > 湖南农业大学 > 一种用于陡坡行走的履轨一体转运平台专利详情

一种用于陡坡行走的履轨一体转运平台   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2018-08-23
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2019-03-05
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2020-07-10
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2038-08-23
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201810968835.4 申请日 2018-08-23
公开/公告号 CN109305521B 公开/公告日 2020-07-10
授权日 2020-07-10 预估到期日 2038-08-23
申请年 2018年 公开/公告年 2020年
缴费截止日
分类号 B65G35/00 主分类号 B65G35/00
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 8
权利要求数量 9 非专利引证数量 0
引用专利数量 4 被引证专利数量 0
非专利引证
引用专利 CN104334378A、CN206969576U、KR101087066B1、JPH0577720A 被引证专利
专利权维持 4 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 湖南农业大学 当前专利权人 湖南农业大学
发明人 胡文武、蒋蘋、石毅新、罗亚辉、林伟、董承泉、舒鑫、黄腾达、汪福杰、龙丽霞 第一发明人 胡文武
地址 湖南省长沙市芙蓉区农大路1号 邮编 410000
申请人数量 1 发明人数量 10
申请人所在省 湖南省 申请人所在市 湖南省长沙市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
长沙朕扬知识产权代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
邓宇
摘要
本发明公开了一种用于陡坡行走的履轨一体转运平台,包括履带底盘和轨道,所述履带底盘上安装有用于与轨道配合调节履带底盘附着力的附着力增强装置和用于检测轨道位置的位置检测装置。该履轨一体转运平台具有安全性好、工作稳定、可靠性高、适用范围广等优点。
  • 摘要附图
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图1
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图2
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图3
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图4
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图5
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图6
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图7
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图8
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图9
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图10
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图11
    一种用于陡坡行走的履轨一体转运平台
  • 说明书附图:图12
    一种用于陡坡行走的履轨一体转运平台
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2020-07-10 授权
2 2019-03-05 实质审查的生效 IPC(主分类): B65G 35/00 专利申请号: 201810968835.4 申请日: 2018.08.23
3 2019-02-05 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种用于陡坡行走的履轨一体转运平台,包括履带底盘(1)和轨道(2),其特征在于:
所述履带底盘(1)上安装有用于与轨道(2)配合调节履带底盘(1)附着力的附着力增强装置(3)和用于检测轨道(2)位置的位置检测装置(4);所述附着力增强装置(3)包括支架(31)、滑移轮(32)、缓冲组件(33)、用于带动所述支架(31)和滑移轮(32)实现升降的升降机构(34)以及用于实现所述支架(31)绕支架(31)自身旋转的旋转组件(35),所述滑移轮(32)设于所述支架(31)的底部,所述旋转组件(35)设于所述支架(31)上,所述缓冲组件(33)的一端与所述旋转组件(35)连接,所述缓冲组件(33)的另一端与所述升降机构(34)连接,所述升降机构(34)安装在履带底盘(1)上,所述轨道(2)设有承压部(21),所述滑移轮(32)与所述承压部(21)的底面相接。

2.根据权利要求1所述的履轨一体转运平台,其特征在于:所述旋转组件(35)包括旋转轴承(351)和转轴(352),所述支架(31)的一端设有开孔,所述旋转轴承(351)设于所述开孔中,所述转轴(352)设于所述旋转轴承(351)上;所述旋转组件(35)还包括用于驱使所述支架(31)回旋至初始工作位置的扭转复位弹簧(353),所述扭转复位弹簧(353)设于所述支架(31)和缓冲组件(33)之间。

3.根据权利要求1所述的履轨一体转运平台,其特征在于:所述缓冲组件(33)包括第一伸缩弹簧(331)、上连接板(332)和下连接板(333),所述第一伸缩弹簧(331)连接于所述上连接板(332)和下连接板(333)之间,所述上连接板(332)还设有向下连接板(333)延伸的套筒(334),所述升降机构(34)伸入所述套筒(334)中并与所述套筒(334)相连,且升降机构(34)与所述套筒(334)的连接点位于上连接板(332)的下方。

4.根据权利要求3所述的履轨一体转运平台,其特征在于:所述升降机构(34)为提升油缸(341),所述提升油缸(341)的活塞杆与所述套筒(334)连接,所述提升油缸(341)的缸筒绕与履带底盘(1)中轴线平行的轴线铰接安装在履带底盘(1)上;所述支架(31)包括架本体(311)和两块侧板(312),两块所述侧板(312)分设于所述架本体(311)的两侧,每块侧板(312)上均安装有至少一个滑移轮(32),所述轨道(2)位于两块侧板(312)之间,且轨道(2)对应每块侧板(312)都设有承压部(21)。

5.根据权利要求1所述的履轨一体转运平台,其特征在于:所述履带底盘(1)上设有能沿履带底盘(1)中轴线方向移动的移动座(11)和驱动所述移动座(11)移动的伸缩驱动件(12),所述升降机构(34)安装在移动座(11)上。

6.根据权利要求1至5中任一项所述的履轨一体转运平台,其特征在于:所述位置检测装置(4)包括,
安装板(410);
车体姿态传感器,安装在所述安装板(410)上,用于检测车体垂直轴线方向的水平度;
水平调节机构(420),安装在所述安装板(410)上,用于调节所述安装板(410)的水平位置;
仿形压力检测装置(430),安装在所述安装板(410)的下侧,用于检测所述轨道(2)施加在所述仿形压力检测装置(430)上的压力;
高度调节机构(440),其一端固定安装在所述履带底盘(1)上,另一端固定安装在所述水平调节机构(420)上,所述高度调节机构(440)用于根据所述轨道(2)施加在所述仿形压力检测装置(430)上的压力调节所述安装板(410)的高度;
轨道偏移宽度传感器(450),安装在所述安装板(410)的下侧中部,用于检测轨道(2)相对于所述轨道偏移宽度传感器(450)的偏移位置,以确定所述履带底盘(1)轴中心偏移所述轨道(2)的宽度;
中央处理器,所述车体姿态传感器、所述水平调节机构(420)、所述高度调节机构(440)、所述仿形压力检测装置(430)和所述轨道偏移宽度传感器(450)均与所述中央处理器连接。

7.根据权利要求6所述的履轨一体转运平台,其特征在于:所述仿形压力检测装置(430)包括,
触轨钢管(431),安装在所述安装板(410)的下侧,且所述触轨钢管(431)不与所述安装板(410)的下侧相接触;
两个压力感应盒子(432),两个所述压力感应盒子(432)均安装于所述安装板(410)的下侧,两个所述压力感应盒子(432)分别通过一第二伸缩弹簧(433)与所述触轨钢管(431)的两端相连接,所述压力感应盒子(432)与所述中央处理器连接,用于检测所述轨道(2)施加在所述触轨钢管(431)上的压力。

8.根据权利要求7所述的履轨一体转运平台,其特征在于:所述压力感应盒子(432)包括,
壳体(4321),安装在所述安装板(410)的下侧,所述壳体(4321)内设有两个轴承座;
接触转轴(4322),穿设在两个所述轴承座上,所述接触转轴(4322)与所述轴承座螺纹连接,所述接触转轴(4322)的一端从所述壳体(4321)伸出,所述接触转轴(4322)从所述壳体(4321)伸出的一端与所述第二伸缩弹簧(433)连接;
固定基座(4323),固设于所述壳体(4321)内,所述固定基座(4323)套设在所述接触转轴(4322)的外围;
感应块(4324),固定设置在所述接触转轴(4322)上,并且位于所述壳体(4321)的内部;
回位弹簧(4325),套设在所述接触转轴(4322)上,所述回位弹簧(4325)的一端与所述感应块(4324)连接,其另一端连接在所述固定基座(4323)上;
接近开关(4326),安装在所述固定基座(4323)上并伸向所述感应块(4324),所述接近开关(4326)与所述中央处理器连接。

9.根据权利要求6所述的履轨一体转运平台,其特征在于:所述水平调节机构(420)包括水平调节电机(421),所述安装板(410)的上侧设有一支座(412),所述水平调节电机(421)铰接安装在所述支座(412)上,所述水平调节电机(421)与所述中央处理器连接;所述高度调节机构(440)包括高度调节油缸(441),所述高度调节油缸(441)的一端固定连接在所述水平调节电机(421)上,其另一端固定安装在所述履带底盘(1)上,所述高度调节油缸(441)与所述中央处理器连接。
说明书

技术领域

[0001] 本发明涉及转运平台装备技术领域,具体涉及一种用于陡坡行走的履轨一体转运平台。

背景技术

[0002] 在丘陵山区等具有陡坡的农业作业环境,通常采用牵引方式实现农机、农资、农产品的转运运输,该类型机器不具备自主行走功能,只能以固定的轨道行驶,设备使用率低。而履带平台不能够在陡坡环境下安全作业,导致此类环境下转运平台设备使用率低、或者安全性差等问题。
[0003] 履轨一体化转运平台,可以满足在非陡坡环境下的自主行走,陡坡环境下的入轨行驶,有效的实现了转运平台的利用最大化。然而现有履带平台在陡坡环境下作业容易打滑甚至倾翻,使用的安全性差,导致转运平台的使用受到了限制,使用率低,此外在使用过程中还存在因无法保证附着力,车体出现偏离轨道的问题。并且,在平台入轨后,如何准确检测轨道与平台的相对位置关系,是实现平台入轨安全行驶的关键。目前的检测装置无法实时准确地检测履轨一体转运平台的轨道位置,无法保证平台入轨行驶的安全性和可靠性。

发明内容

[0004] 本发明要解决的技术问题是克服现有技术存在的不足,提供一种安全性好、工作稳定、可靠性高、适用范围广的用于陡坡行走的履轨一体转运平台。
[0005] 为解决上述技术问题,本发明采用以下技术方案:
[0006] 一种用于陡坡行走的履轨一体转运平台,包括履带底盘和轨道,所述履带底盘上安装有用于与轨道配合调节履带底盘附着力的附着力增强装置和用于检测轨道位置的位置检测装置。
[0007] 作为上述技术方案的进一步改进:
[0008] 所述附着力增强装置包括支架、滑移轮、缓冲组件、用于带动所述支架和滑移轮实现升降的升降机构以及用于实现所述支架绕支架自身旋转的旋转组件,所述滑移轮设于所述支架的底部,所述旋转组件设于所述支架上,所述缓冲组件的一端与所述旋转组件连接,所述缓冲组件的另一端与所述升降机构连接,所述升降机构安装在履带底盘上,所述轨道设有承压部,所述滑移轮与所述承压部的底面相接。
[0009] 所述旋转组件包括旋转轴承和转轴,所述支架的一端设有开孔,所述旋转轴承设于所述开孔中,所述转轴设于所述旋转轴承上;所述旋转组件还包括用于驱使所述支架回旋至初始工作位置的扭转复位弹簧,所述扭转复位弹簧设于所述支架和缓冲组件之间。
[0010] 所述缓冲组件包括第一伸缩弹簧、上连接板和下连接板,所述第一伸缩弹簧连接于所述上连接板和下连接板之间,所述上连接板还设有向下连接板延伸的套筒,所述升降机构伸入所述套筒中并与所述套筒相连,且升降机构与所述套筒的连接点位于上连接板的下方。
[0011] 所述升降机构为提升油缸,所述提升油缸的活塞杆与所述套筒连接,所述提升油缸的缸筒绕与履带底盘中轴线平行的轴线铰接安装在履带底盘上;所述支架包括架本体和两块侧板,两块所述侧板分设于所述架本体的两侧,每块侧板上均安装有至少一个滑移轮,所述轨道位于两块侧板之间,且轨道对应每块侧板都设有承压部。
[0012] 所述履带底盘上设有能沿履带底盘中轴线方向移动的移动座和驱动所述移动座移动的伸缩驱动件,所述升降机构安装在移动座上。
[0013] 所述位置检测装置包括,安装板;车体姿态传感器,安装在所述安装板上,用于检测车体垂直轴线方向的水平度;水平调节机构,安装在所述安装板上,用于调节所述安装板的水平位置;仿形压力检测装置,安装在所述安装板的下侧,用于检测所述轨道施加在所述仿形压力检测装置上的压力;高度调节机构,其一端固定安装在所述履带底盘上,另一端固定安装在所述水平调节机构上,所述高度调节机构用于根据所述轨道施加在所述仿形压力检测装置上的压力调节所述安装板的高度;轨道偏移宽度传感器,安装在所述安装板的下侧中部,用于检测轨道相对于所述轨道偏移宽度传感器的偏移位置,以确定所述履带底盘轴中心偏移所述轨道的宽度;中央处理器,所述车体姿态传感器、所述水平调节机构、所述高度调节机构、所述仿形压力检测装置和所述轨道偏移宽度传感器均与所述中央处理器连接。
[0014] 所述仿形压力检测装置包括,触轨钢管,安装在所述安装板的下侧,且所述触轨钢管不与所述安装板的下侧相接触;两个压力感应盒子,两个所述压力感应盒子均安装于所述安装板的下侧,两个所述压力感应盒子分别通过一第二伸缩弹簧与所述触轨钢管的两端相连接,所述压力感应盒子与所述中央处理器连接,用于检测所述轨道施加在所述触轨钢管上的压力。
[0015] 所述压力感应盒子包括,壳体,安装在所述安装板的下侧,所述壳体内设有两个轴承座;接触转轴,穿设在两个所述轴承座上,所述接触转轴与所述轴承座螺纹连接,所述接触转轴的一端从所述壳体伸出,所述接触转轴从所述壳体伸出的一端与所述第二伸缩弹簧连接;固定基座,固设于所述壳体内,所述固定基座套设在所述接触转轴的外围;感应块,固定设置在所述接触转轴上,并且位于所述壳体的内部;回位弹簧,套设在所述接触转轴上,所述回位弹簧的一端与所述感应块连接,其另一端连接在所述固定基座上;接近开关,安装在所述固定基座上并伸向所述感应块,所述接近开关与所述中央处理器连接。
[0016] 所述水平调节机构包括水平调节电机,所述安装板的上侧设有一支座,所述水平调节电机铰接安装在所述支座上,所述水平调节电机与所述中央处理器连接;所述高度调节机构包括高度调节油缸,所述高度调节油缸的一端固定连接在所述水平调节电机上,其另一端固定安装在所述履带底盘上,所述高度调节油缸与所述中央处理器连接。
[0017] 与现有技术相比,本发明的优点在于:本发明的用于陡坡行走的履轨一体转运平台在履带底盘上安装有附着力增强装置和位置检测装置,通过附着力增强装置与轨道的配合可增加履带底盘附着力,避免履带底盘偏移轨道或在爬坡过程中车体出现打滑、倾翻等问题,保证了履轨一体化转运平台的正常运行,提高了安全性能,使履轨一体化转运平台适用于更为复杂的地形环境;通过位置检测装置检测履带底盘偏移轨道的位置,从而确保履轨一体转运平台入轨行驶的安全性和可靠性。

实施方案

[0032] 以下结合附图和具体实施例对本发明作进一步详细说明。
[0033] 如图1所示,本实施例的用于陡坡行走的履轨一体转运平台,包括履带底盘1和轨道2,履带底盘1上安装有用于与轨道2配合调节履带底盘1附着力的附着力增强装置3和用于检测轨道2位置的位置检测装置4。该履轨一体转运平台在履带底盘1上安装有附着力增强装置3和位置检测装置4,通过附着力增强装置3与轨道2的配合可增加履带底盘1附着力,避免履带底盘1偏移轨道或在爬坡过程中车体出现打滑、倾翻等问题,保证了履轨一体化转运平台的正常运行,提高了安全性能,使履轨一体化转运平台适用于更为复杂的地形环境;通过位置检测装置4检测履带底盘1偏移轨道2的位置,从而确保履轨一体转运平台入轨行驶的安全性和可靠性。
[0034] 本实施例中,如图1至图5所示,附着力增强装置3包括支架31、滑移轮32、缓冲组件33、用于带动支架31和滑移轮32实现升降的升降机构34以及用于实现支架31绕支架31自身旋转的旋转组件35,滑移轮32设于支架31的底部,旋转组件35设于支架31上,缓冲组件33的一端与旋转组件35连接,缓冲组件33的另一端与升降机构34连接,升降机构34安装在履带底盘1上,轨道2设有承压部21,滑移轮32与承压部21的底面相接。通过升降机构34提升支架
31,使支架31上的滑移轮32压紧承压部21,可增加履带对地面的压力,实现附着力的增强,有效避免了履带底盘1在各种地形中行驶时出现的打滑、倾翻、偏移轨道2等问题,安全性能高,保证了履轨一体化转运平台的正常运行,适用范围更广。该附着力增强装置3具有结构简单紧凑、工作稳定可靠的优点。
[0035] 本实施例中,旋转组件35包括旋转轴承351和转轴352,支架31的一端设有开孔,旋转轴承351设于开孔中,转轴352设于旋转轴承351上。通过旋转组件35的旋转作用,当履带底盘1与轨道2在水平方向上呈一定角度,如弯道等情况,支架31在旋转组件35的作用下旋转,缓冲组件33和升降机构34等不会受到旋转力的影响而造成损坏。
[0036] 本实施例中,旋转组件35还包括用于驱使支架31回旋至初始工作位置的扭转复位弹簧353,扭转复位弹簧353设于支架31和缓冲组件33之间。扭转复位弹簧353能够在滑移轮32入轨前驱使支架31及滑移轮32回旋到正确的工作位置。
[0037] 本实施例中,扭转复位弹簧353处设有编码盘和角度传感器。编码盘和角度传感器用来检测车身的偏转,履带底盘1沿轨道2行走时,履带底盘1车身可能与轨道2不一定平行,这时候编码盘可以测得履带底盘1车身与轨道2之间的角位移差,便于控制履带底盘1转向来调整,使履带底盘1车身与轨道2平行沿直线行走。
[0038] 本实施例中,缓冲组件33包括第一伸缩弹簧331、上连接板332和下连接板333,第一伸缩弹簧331连接于上连接板332和下连接板333之间,上连接板332还设有向下连接板333延伸的套筒334,升降机构34伸入套筒334中并与套筒334相连,且升降机构34与套筒334的连接点位于上连接板332的下方。具体的,上连接板332和下连接板333上安装有吊环螺栓,第一伸缩弹簧331通过吊环螺栓安装在上连接板332和下连接板333之间,以便于安装和拆卸,在安装时,利用第一伸缩弹簧331的少量的初拉力,使第一伸缩弹簧331在装配时处于一定的拉伸位置。第一伸缩弹簧331能够完成力的传递,当履带底盘1运行在凹凸不平的坡道上时,地面会对升降机构34产生一定的冲击力,此时第一伸缩弹簧331能够吸收这一部分冲击载荷,此外当履带底盘1出现偏移轨道2,与轨道2呈一定高程方向上的夹角时,通过第一伸缩弹簧331的形变,在满足附着力增强的同时,可防止硬连接对轨道2水平方向与垂直方向上的破坏,防止升降机构34位移变化对轨道2垂直方向上的破坏,同时采用上连接板
332、下连接板333和套筒334的结构,升降机构34与套筒334的连接点位于上连接板332的下方,也即将升降机构34的一部分设置在套筒334内,能有效降低安装距离,使整个附着力增强装置3所占的竖向空间减小,能够大大提高结构紧凑性,对于底盘较低的履带底盘1也能适用。
[0039] 本实施例中,第一伸缩弹簧331设有多个,多个第一伸缩弹簧331均匀分布在套筒334的四周。若只使用单根第一伸缩弹簧331,所需的拉伸第一伸缩弹簧331的簧丝直径会非常大,而采用上述的多个第一伸缩弹簧331能够将力分散至每个第一伸缩弹簧331,缓冲效果更好。
[0040] 本实施例中,升降机构34为提升油缸341,提升油缸341的活塞杆且与套筒334连接,提升油缸341的缸筒与履带底盘1铰接,且缸筒与履带底盘1的铰接轴线与履带底盘1的中轴线平行。具体的,使用铰链实现提升油缸341的缸筒的端部与履带底盘1的铰接。提升油缸341用来控制支架31和滑移轮32的升降,实现滑移轮32对轨道2的附着力增强,提升油缸341的上端采用上述铰接的方式,可以实现附着力增强装置3在车体宽度方向上的偏摆,从而适应履带底盘1相对于轨道2的偏移,避免因硬连接而损坏附着力增强装置3等结构。
[0041] 在不需要增加附着力时,升降机构34将附着力增强装置3整体提升,可避免附着力增强装置3干涉履带底盘1行走。在其他实施例中,还可设置用于驱动履带附着力增强装置3绕与履带底盘1铰接处旋转的收放机构。具体的,收放机构为收放油缸。收放油缸能够驱动附着力增强装置3绕铰接轴线旋转,实现平地移动时对附着力增强装置3的收缩以及爬坡状态下的放下。
[0042] 本实施例中,支架31包括架本体311和两块侧板312,两块侧板312分设于架本体311的两侧,每块侧板312上均安装有两个滑移轮32,轨道2位于两块侧板312之间,且轨道2对应每块侧板312都设有承压部21。该种设置能够提高附着力增强装置3与轨道2之间受力的均匀性和稳定性,且滑移轮32不会脱出,利于保证工作稳定性和可靠性。
[0043] 本实施例的附着力增强装置3工作过程为:
[0044] 履带底盘1受控行驶到轨道2的起始端,控制提升油缸341,使滑移轮32的高度下降到与轨道2高度一致时,移动履带底盘1,使滑移轮32进入到轨道2内。
[0045] 定义轨道2延伸的方向为Y轴,在水平面上垂直于Y轴的方向为X轴,在竖直面上垂直于Y轴的方向为Z轴。
[0046] 在履带底盘1的移动过程中,如果履带底盘1出现相对轨道2一定角度的旋转运动时,即与Y轴出现一定的角度时,通过旋转轴承351可以使得滑移轮32在轨道2内自由运动而不受履带底盘1对轨道2的旋转方向力的影响,避免轨道2与履带底盘1呈现硬连接,甚至导致脱轨。
[0047] 当履带底盘1的中轴线在水平面上出现与轨道2的偏移时,即履带底盘1整体沿X轴方向以平行于Y轴的方式偏离Y轴时,第一伸缩弹簧331受力变形,虽然在水平面上垂直轨道2的方向有分力作用,但依然可以保证附着力增强装置3正常工作,确保履带底盘1保持正常行驶所需的附着力。
[0048] 当履带底盘1的中轴线与轨道2同向出现角度差,也就是爬坡状态下,履带底盘1沿Y轴方向前进,履带底盘1沿Z轴方向与Y轴出现一定的角度时,第一伸缩弹簧331在与轨道2方向上受力变形,附着力依然得到保证。
[0049] 通过第一伸缩弹簧331的力传递的作用,可以解决车体底盘在上述两种状态下在一定范围的位移偏差附着力的传递,提升油缸341根据附着力的大小,实时调节长短,保证最佳的附着力。
[0050] 本实施例中,如图1所示,履带底盘1上设有能沿履带底盘1中轴线方向移动的移动座11和驱动移动座11移动的伸缩驱动件12,升降机构34安装在移动座11上。通过伸缩驱动件12驱动移动座11在履带底盘1中轴线方向上移动,从而调节移动座11在履带底盘1中轴线方向上的位置,也即调节附着力增强装置3在履带底盘1中轴线方向上的位置,可根据实际情况调节附着力增强装置3在履带底盘1中轴线方向上的位置,使履带底盘1的受力点始终处在最优位置,保证有效的增加附着力。并且,还可通过调节附着力增强装置3在履带底盘1中轴线方向上的位置,使附着力增强装置3快速、方便的入轨。
[0051] 优选的,移动座11能沿履带底盘1中轴线方向移动的设置具体是,履带底盘1上设有导轨,导轨沿履带底盘1中轴线方向布置,移动座11上安装有多个支承在导轨中并沿导轨滚动的滚轮。当然,在其他实施例中,移动座11也可以是直接滑设于履带底盘1上的滑块。上述伸缩驱动件12采用伸缩油缸。
[0052] 本实施例的附着力增强装置3具有以下优点:
[0053] 1、在履带底盘1运行时,通过升降机构34的拉力来增加履带底盘1对地面的压力,从而增加履带与地面的附着力,当履带底盘1在陡坡上移动时,由于坡度过大,导致履带底盘1车体垂直于地面的正向压力不够,从而导致履带行驶所需的附着力不够,履带底盘1出现打滑情况,通过附着力增强装置3与地面的轨道2进行拉紧控制,使得履带底盘1垂直地面的压力得到增强,从而增强履带附着力,能解决爬坡状态或履带底盘1与轨道2出现偏移运动时因附着力不够带来的问题,有效避免了履带底盘1偏移轨道2或在爬坡过程中履带底盘1出现打滑、倾翻等问题,保证了履轨一体化转运平台的正常运行,提高了安全性能,适用于更为复杂的地形环境。
[0054] 2、附着力增强装置3包括支架31、滑移轮32、缓冲组件33、升降机构34和旋转组件35,缓冲组件33能够完成力的传递,在满足附着力增强的同时,吸收因地面不平产生的冲击力,防止硬连接对轨道2造成破坏,升降机构34能控制支架31及滑移轮32的升降,调节支架
31和滑移轮32的高度位置实现滑移轮32对轨道2附着力的增强,旋转组件35使得支架31能够实现自转,一方面便于受控调节方向可以对准轨道2入轨,另一方面当履带底盘1与轨道2延伸的方向出现一定角度时,上部的缓冲组件33不会受到旋转力的影响而损坏。
[0055] 3. 在平地运行时,履带底盘1的中轴线平行于轨道2,在进入坡道时,履带底盘1的中轴线与轨道2出现角度差,缓冲组件33在与轨道2方向上受力变形,附着力依然能够得到保证。如当底盘进入30°的坡道时,在履带底盘1入坡过程中由0°转换到30°,转换过程中履带底盘1和坡道不会平行,因此通过缓冲组件33的弹性变形,可以消除履带底盘1与轨道2同方向上的角度差,同时增强履带对地面的正向压力。
[0056] 4. 当履带底盘1的中轴线与轨道2在水平方向出现偏移运动时,即履带底盘1中轴线出现相对轨道2平移的情况,缓冲组件33受力变形,在水平面上垂直于轨道2的方向有分力作用,可以避免硬连接对轨道2拉车,保护轨道2,不影响履带底盘1的正常行驶,同时升降机构34对轨道2的拉力使地面附着力依然可以得到可靠的保证,确保履带底盘1与地面保持正常的行驶所需的附着力。
[0057] 本实施例中,如图6至图12所示,位置检测装置4包括安装板410、车体姿态传感器(图中未示出)、水平调节机构420、高度调节机构440、仿形压力检测装置430、轨道偏移宽度传感器450和中央处理器(图中未示出)。其中,车体姿态传感器安装在安装板410上,用于检测车体垂直轴线方向的水平度;水平调节机构420安装在安装板410上,用于调节安装板410的水平位置;仿形压力检测装置430安装在安装板410的下侧,用于检测轨道2施加在仿形压力检测装置430上的压力;高度调节机构440的一端固定安装在履带底盘1上,另一端固定安装在水平调节机构420上,高度调节机构440用于根据轨道2施加在仿形压力检测装置430上的压力调节安装板410的高度;轨道偏移宽度传感器450安装在安装板410的下侧中部,用于检测轨道2相对于轨道偏移宽度传感器450的偏移位置,以确定履带底盘1轴中心偏移轨道2的宽度;车体姿态传感器、水平调节机构420、高度调节机构440、仿形压力检测装置430和轨道偏移宽度传感器450均与中央处理器连接。
[0058] 上述的位置检测装置4,通过在履带底盘1下方连接安装板410,设置车体姿态传感器、轨道偏移宽度传感器450和仿形压力检测装置430,并且设置水平调节机构420和高度调节机构440,通过车体姿态传感器获取履带底盘1的倾斜角度信息,通过水平调节机构420调节安装板410的水平姿态,使安装板410上的轨道偏移宽度传感器450保持水平位置,通过仿形压力检测装置430及高度调节机构440调节安装板410的高度,使轨道偏移宽度传感器450与轨道2保持合适的高度距离,轨道偏移宽度传感器450在水平位置和与轨道2保持合适高度距离的情况下对轨道2相对于轨道偏移宽度传感器450的偏移位置进行检测,确定履带底盘1轴中心偏移轨道2的宽度。该位置检测装置4可以实时准确地检测履轨一体转运平台的轨道位置,从而确保了平台入轨行驶的安全性和可靠性。
[0059] 具体地,参见图7、图8和图9,在本实施例中,仿形压力检测装置430包括触轨钢管431和两个压力感应盒子432。其中,触轨钢管431安装在安装板410的下侧,且触轨钢管431不与安装板410的下侧相接触;两个压力感应盒子432均安装于安装板410的下侧,两个压力感应盒子432分别通过一根第二伸缩弹簧433与触轨钢管431的两端相连接。压力感应盒子
432与中央处理器连接,用于检测轨道2施加在触轨钢管431上的压力。
[0060] 在转运平台入轨运行时,触轨钢管431与轨道2接触,轨道2向上压迫触轨钢管431,并使触轨钢管431在轨道2上滚动,第二伸缩弹簧433的状态发生改变,通过压力感应盒子432检测第二伸缩弹簧433的状态变化,即可检测出轨道2施加在触轨钢管431上的压力。轨道2施加在触轨钢管431上的压力大小反映出轨道2与轨道偏移宽度传感器450之间的距离信息。轨道2施加在触轨钢管431上的压力越大表明轨道2与轨道偏移宽度传感器450之间的距离越近;轨道2施加在触轨钢管431上的压力越小表明轨道2与轨道偏移宽度传感器450之间的距离越远。通过压力感应盒子432检测出轨道2施加在触轨钢管431上的压力后,由中央处理器控制高度调节机构440调节安装板410的高度,使轨道偏移宽度传感器450始终在要求的与轨道2的距离范围内工作,确保轨道2位置检测的准确性,进一步提高了转运平台入轨行驶的安全性和可靠性。并且,采用触轨钢管431在轨道2上进行滚动仿形运动的方式测试压力,消除了轨道2安装时的水平度误差,减少了对轨道2上磁带的摩擦,确保了可靠的检测距离,保护了轨道偏移宽度传感器450。
[0061] 进一步地,参见图9、图11和图12,在本实施例中,压力感应盒子432包括壳体4321、接触转轴4322、固定基座4323、感应块4324、回位弹簧4325和接近开关4326。其中,壳体4321安装在安装板410的下侧,壳体4321内设有两个轴承座;接触转轴4322穿设在两个轴承座上,接触转轴4322与轴承座螺纹连接,接触转轴4322的一端从壳体4321伸出,接触转轴4322从壳体4321伸出的一端与第二伸缩弹簧433连接;固定基座4323固设于壳体4321内,且固定基座4323套设在接触转轴4322的外围,固定基座4323不与接触转轴4322接触;感应块4324固定设置在接触转轴4322上,并且位于壳体4321的内部;回位弹簧4325套设在接触转轴4322上,回位弹簧4325的一端与感应块4324连接,其另一端连接在固定基座4323上;接近开关4326安装在固定基座4323上并伸向感应块4324,接近开关4326与中央处理器连接。
[0062] 当轨道2向上压迫触轨钢管431时,第二伸缩弹簧433处于拉伸状态,触轨钢管431在轨道2上滚动,通过第二伸缩弹簧433带动接触转轴4322向压力感应盒子432的外侧转动,使感应块4324远离接近开关4326;当轨道2不压迫触轨钢管431时,第二伸缩弹簧433处于放松状态,接触转轴4322在回位弹簧4325的作用下向压力感应盒子432的内侧转动,使感应块4324靠近接近开关4326。通过检测接近开关4326与感应块4324之间的距离,即可检测出第二伸缩弹簧433所处的状态,反映出轨道2对触轨钢管431的压迫程度,进而反映出轨道偏移宽度传感器450与轨道2之间的相对距离。若接近开关4326与感应块4324之间的距离越远,则轨道偏移宽度传感器450与轨道2之间的距离越近;若接近开关4326与感应块4324之间的距离越近,则轨道偏移宽度传感器450与轨道2之间的距离越远。通过高度调节机构440调节安装板410的高度,使轨道偏移宽度传感器450始终在要求的与轨道2的距离范围内工作,使转运平台安全入轨行驶。
[0063] 参见图6、图7、图8和图9,在本实施例中,安装板410上对应于触轨钢管431处开设有镂空槽411。这样,可确保触轨钢管431在受轨道2压迫状态时不会与安装板410相接触,提高了仿形压力检测的准确性和可靠性。
[0064] 参见图6、图7、图8和图9,在本实施例中,仿形压力检测装置430为至少两套,至少两套该仿形压力检测装置430平行安装在安装板410的下方两侧。轨道2沿垂直于两根触轨钢管431的方向位于触轨钢管431的下方。通过设置两套该仿形压力检测装置430,提高了仿形压力检测的准确性和稳定性。
[0065] 参见图6,在本实施例中,水平调节机构420包括水平调节电机421,在安装板410的上侧设置有一个支座412,水平调节电机421铰接安装在该支座412上,水平调节电机421与中央处理器连接。当车体姿态传感器检测到履带底盘1车体倾斜角度α时,由中央处理器控制水平调节电机421动作,向与倾斜角度相反的方向旋转角度α,使得安装板410保持水平姿态,进而使轨道偏移宽度传感器450保持水平位置。水平调节电机421通过带蜗轮蜗杆减速箱的减速电机进行旋转控制,确保传感器检测面与水平度检测面始终平行。
[0066] 参见图6和图7,在本实施例中,高度调节机构440包括高度调节油缸441,该高度调节油缸441的一端固定连接在水平调节电机421上,其另一端固定安装在履轨一体转运平台的车体上,高度调节油缸441与中央处理器连接。通过仿形压力检测装置430检测到轨道与轨道偏移宽度传感器450之间的距离后,由中央处理器控制高度调节油缸441动作,对安装板410的高度进行调节,使轨道偏移宽度传感器450始终在与轨道2合适的距离区间内工作。
[0067] 该位置检测装置4的工作原理及检测方法如下:
[0068] 通过车体姿态传感器获取履带底盘1的倾斜角度信息,并将该倾斜角度信息发送至中央处理器,中央处理器根据该倾斜角度信息控制水平调节机构420调节安装板410的角度,使安装板410上的轨道偏移宽度传感器450保持水平位置;
[0069] 通过压力感应盒子432对第二伸缩弹簧433的状态进行检测,当第二伸缩弹簧433处于拉伸状态时,触轨钢管431压在轨道2上滚动,通过第二伸缩弹簧433带动压力感应盒子432内的接触转轴4322向外转动,进而使压力感应盒子432内的感应块4324和接近开关4326之间的距离增大;当第二伸缩弹簧433处于放松状态时,压力感应盒子432内的回位弹簧
4325带动接触转轴4322向内转动,进而使感应块4324和接近开关4326之间的距离减小;通过检测感应块4324和接近开关4326之间的距离大小检测第二伸缩弹簧433的所处状态;当第二伸缩弹簧433处于放松状态时,中央处理器控制高度调节机构440动作,使安装板410整体下降,直到触轨钢管431压紧轨道2;当第二伸缩弹簧433处于拉伸状态时,高度调节机构
440停止动作;当第二伸缩弹簧433处于拉伸状态时的张力超过设定值时,中央处理器控制高度调节机构440动作,使安装板410整体上升;如此调节,使轨道偏移宽度传感器450与轨道保持合适的高度;
[0070] 轨道偏移宽度传感器450在水平位置及与轨道2保持合适的高度情况下,准确、可靠地对轨道2相对于轨道偏移宽度传感器450的偏移位置进行检测,以确定履带底盘1轴中心偏移轨道2的宽度,进而提高转运平台入轨行驶的安全性和可靠性。
[0071] 以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本技术领域的技术人员来说,在不脱离本发明技术构思前提下所得到的改进和变换也应视为本发明的保护范围。

附图说明

[0018] 图1为用于陡坡行走的履轨一体转运平台的立体结构示意图。
[0019] 图2为附着力增强装置的主视结构示意图。
[0020] 图3为图2中A-A剖视结构示意图。
[0021] 图4为附着力增强装置的侧视方向的局部剖面图。
[0022] 图5为附着力增强装置的立体结构示意图。
[0023] 图6为位置检测装置的结构示意图。
[0024] 图7为位置检测装置的仰视结构示意图。
[0025] 图8为位置检测装置中除去水平调节机构和高度调节机构后的结构示意图。
[0026] 图9为位置检测装置中除去水平调节机构和高度调节机构后的仰视结构示意图。
[0027] 图10为位置检测装置中触轨钢管的结构示意图。
[0028] 图11为位置检测装置中压力感应盒子的结构示意图。
[0029] 图12为位置检测装置中压力感应盒子的内部结构示意图。
[0030] 图例说明:
[0031] 1、履带底盘;11、移动座;12、伸缩驱动件;2、轨道;21、承压部;3、附着力增强装置;31、支架;311、架本体;312、侧板;32、滑移轮;33、缓冲组件;331、第一伸缩弹簧;332、上连接板;333、下连接板;334、套筒;34、升降机构;341、提升油缸;35、旋转组件;351、旋转轴承;
352、转轴;353、扭转复位弹簧;4、位置检测装置;410、安装板;411、镂空槽;412、支座;420、水平调节机构;421、水平调节电机;430、仿形压力检测装置;431、触轨钢管;432、压力感应盒子;433、第二伸缩弹簧;440、高度调节机构;441、高度调节油缸;450、轨道偏移宽度传感器;4321、壳体;4322、接触转轴;4323、固定基座;4324、感应块;4325、回位弹簧;4326、接近开关。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号