首页 > 专利 > 杭州电子科技大学 > 双干涉光路调频连续波激光测距信号处理方法专利详情

双干涉光路调频连续波激光测距信号处理方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2015-07-14
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2016-01-06
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2017-07-25
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2035-07-14
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201510413309.8 申请日 2015-07-14
公开/公告号 CN105137444B 公开/公告日 2017-07-25
授权日 2017-07-25 预估到期日 2035-07-14
申请年 2015年 公开/公告年 2017年
缴费截止日
分类号 G01S17/32 主分类号 G01S17/32
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 1
权利要求数量 2 非专利引证数量 1
引用专利数量 3 被引证专利数量 0
非专利引证 1、樊玉赢.激光测距仪光学系统设计及数据处理方法研究《.中国优秀硕士学位论文全文数据库 信息科技辑》.2013,(第S2期),王留留.基于白光干涉的绝对距离测量方法的研究《.中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》.2009,(第10期),时光 等.高分辨率调频连续波激光绝对测距研究《.物理学报》.2014,第63卷(第18期),曲兴华 等.利用信号拼接提高调频连续波激光测距系统的分辨力《.光学精密工程》.2015,第23卷(第1期),赵索文.单频干涉精密距离测量关键技术研究《.中国博士学位论文全文数据库 信息科技辑》.2014,(第6期),;
引用专利 CN104007442A、US5521704A、CN103197322A 被引证专利
专利权维持 3 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 杭州电子科技大学 当前专利权人 杭州电子科技大学
发明人 时光、王文 第一发明人 时光
地址 浙江省杭州市下沙高教园区2号大街 邮编
申请人数量 1 发明人数量 2
申请人所在省 浙江省 申请人所在市 浙江省杭州市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
杭州君度专利代理事务所 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
杜军
摘要
本发明公开了一种双干涉光路调频连续波激光测距信号处理方法。调频连续波激光测距中时频变换方数据量大,过零比较计数法易引入干扰。本发明的步骤:可调谐激光器发射的激光分别进入测量干涉系统和参考干涉系统,得到两路频率不等的正弦波信号;高速数据采集系统采集两路正弦波信号,得到信号sig1和sig2;提取信号sig1和sig2的极值点集;计算计数起始点和计数终止点对应时间段内,信号sig1和sig2的极值点数量,记为n1和n2;测量计数起始点与信号sig1的第一个极值点的相位差p1,计数终止点与信号sig1的最后一个极值点的相位差p2;计算逆反射棱镜的距离。本发明运算量小,精度优于过零比较计数法。
  • 摘要附图
    双干涉光路调频连续波激光测距信号处理方法
  • 说明书附图:图1
    双干涉光路调频连续波激光测距信号处理方法
  • 说明书附图:图2
    双干涉光路调频连续波激光测距信号处理方法
  • 说明书附图:图3
    双干涉光路调频连续波激光测距信号处理方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2017-07-25 授权
2 2016-01-06 实质审查的生效 IPC(主分类): G01S 17/32 专利申请号: 201510413309.8 申请日: 2015.07.14
3 2015-12-09 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.双干涉光路调频连续波激光测距信号处理方法,其特征在于:该方法的具体步骤如下:
步骤1、搭建双干涉光路调频连续波激光测距系统,可调谐激光器发射光频线性调制的窄线宽激光,分别进入测量干涉系统和参考干涉系统,得到两路频率不相等的正弦波信号;
其中,测量干涉系统中,激光被分为两路,一路激光被逆反射棱镜反射后与另一路发生干涉得到正弦波信号;
步骤2、高速数据采集系统的通道一和通道二分别对测量干涉系统和参考干涉系统的正弦波信号进行同步数据采集,得到信号sig1和sig2;
步骤3、对信号sig1和sig2进行极值提取,得到信号sig1和信号sig2的极值点集;
步骤4、将可调谐激光器的调制开始信号发出后信号sig2的第一个极值点作为计数起始点;可调谐激光器的调制终止信号发出后,信号sig2的第一个极值点作为计数终止点;
步骤5、计算计数起始点和计数终止点之间对应的时间段内,信号sig1和sig2的极值点数量,分别记为n1和n2;测量得到计数起始点与信号sig1的第一个极值点之间的相位为p1,计数终止点与信号sig1的最后一个极值点之间的相位为p2;
步骤6、将测得的n1、n2、p1和p2代入测距公式得到逆反射棱镜的距离:
式中,dis为参考干涉系统的光程差,n为空气折射率,EV为参考干涉系统的干涉臂臂长补偿值;
所述的参考干涉系统为不等臂马赫增德尔干涉系统。

2.根据权利要求1所述的双干涉光路调频连续波激光测距信号处理方法,其特征在于:
所述的步骤1进一步描述为:在测量干涉系统中,一路激光依次经过光环形器和准直透镜投射至逆反射棱镜,被逆反射棱镜反射后再依次经过准直透镜和光环形器反射至第一光电探测器表面与另一路激光汇合,发生干涉,得到第一正弦波信号;参考干涉系统中,延迟光纤令进入参考干涉系统两个干涉臂的激光出现光程差,在第二光电探测器表面发生干涉,得到第二正弦波信号。
说明书

技术领域

[0001] 本发明属于信号处理技术领域,具体涉及一种双干涉光路调频连续波激光测距信号处理方法。

背景技术

[0002] 调频连续波激光测距是一种干涉式大尺寸激光绝对测距技术,具有测量精度高、绝对式测量、可以对漫反射目标进行直接测量等特点。在大尺度几何量测量、重大装备制造、军事科技、空间技术等领域有着广阔的应用前景。
[0003] 可调谐激光器的调制线性度较差,是限制调频连续波激光测距精度的主要原因。等光频间隔采样可以有效提高调频连续波激光测距精度,但是现有针对该方法的信号处理技术并不成熟。利用时频变换的方法存在数据量大,算法复杂对硬件要求高等缺点;利用过零比较计数法直接简单相除得到测距结果的方法很容易引入外界干扰,导致测量结果精度较低。

发明内容

[0004] 本发明目的是针对现有技术的不足,提出一种双干涉光路调频连续波激光测距信号处理方法,该方法无需进行时频变换,大大降低了对硬件系统的数据处理要求,并且可以在不增加激光器调制范围的前提下,提高测量分辨力。
[0005] 本发明的具体步骤如下:
[0006] 步骤1、搭建双干涉光路调频连续波激光测距系统,可调谐激光器发射光频线性调制的窄线宽激光,分别进入测量干涉系统和参考干涉系统,得到两路频率不相等的正弦波信号;其中,测量干涉系统中,激光被分为两路,一路激光被逆反射棱镜反射后与另一路发生干涉得到正弦波信号。
[0007] 步骤2、高速数据采集系统的通道一和通道二分别对测量干涉系统和参考干涉系统的正弦波信号进行同步数据采集,得到信号sig1和sig2。
[0008] 步骤3、对信号sig1和sig2进行极值提取,得到信号sig1和信号sig2的极值点集。
[0009] 步骤4、将可调谐激光器的调制开始信号发出后信号sig2的第一个极值点作为计数起始点;可调谐激光器的调制终止信号发出后,信号sig2的第一个极值点作为计数终止点。
[0010] 步骤5、计算计数起始点和计数终止点之间对应的时间段内,信号sig1和sig2的极值点数量,分别记为n1和n2。测量得到计数起始点与信号sig1的第一个极值点之间的相位为p1,计数终止点与信号sig1的最后一个极值点之间的相位为p2。
[0011] 步骤6、将测得的n1、n2、p1和p2代入测距公式得到逆反射棱镜的距离:
[0012]
[0013] 式中,dis为参考干涉系统的光程差,n为空气折射率,EV为参考干涉系统的干涉臂臂长补偿值。
[0014] 所述的步骤1进一步描述为:在测量干涉系统中,一路激光依次经过光环形器和准直透镜投射至逆反射棱镜,被逆反射棱镜反射后再依次经过准直透镜和光环形器反射至第一光电探测器表面与另一路激光汇合,发生干涉,得到第一正弦波信号。参考干涉系统中,延迟光纤令进入参考干涉系统两个干涉臂的激光出现光程差,在第二光电探测器表面发生干涉,得到第二正弦波信号。
[0015] 所述的参考干涉系统为不等臂马赫增德尔干涉系统。
[0016] 与现有处理调频连续波激光测距信号的方法相比,本发明的有益效果是:
[0017] 对测量得到的两路拍频信号进行处理时,无需对大量的信号进行时频变换,大大减少了运算量;利用极值提取的方法和相位测量的方法,其精度优于直接利用计数器进行过零比较测量得到的测量结果。

实施方案

[0022] 下面结合附图和实施例对本发明作进一步说明。
[0023] 双干涉光路调频连续波激光测距信号处理方法,具体步骤如下:
[0024] 步骤1、如图1和2所示,搭建双干涉光路调频连续波激光测距系统,可调谐激光器1发射光频线性调制的窄线宽激光,分别进入测量干涉系统和参考干涉系统。在测量干涉系统中,激光被分为两路,其中一路激光依次经过光环形器2和准直透镜3投射至逆反射棱镜4,被逆反射棱镜4反射后再依次经过准直透镜3和光环形器2投射至第一光电探测器6表面与另一路激光汇合,发生干涉,得到拍频信号beat1。参考干涉系统为不等臂马赫增德尔干涉系统,延迟光纤8令进入参考干涉系统两个干涉臂的激光出现光程差,在第二光电探测器
7表面发生干涉,得到拍频信号beat2。其中,双干涉光路调频连续波激光测距系统包括可调谐激光器1、量干涉系统、参考干涉系统、高速数据采集系统5、第一光电探测器6和二光电探测器7。
[0025] 步骤2、高速数据采集系统5的通道CH1和通道CH2分别对测量干涉系统得到的拍频信号beat1和参考干涉系统得到的拍频信号beat2进行采集,得到信号sig1和sig2。
[0026] 步骤3、对信号sig1和sig2进行极值提取,得到信号sig1的极值点集E1和信号sig2的极值点集E2。
[0027] 步骤4、如图3所示,将可调谐激光器1的调制开始信号发出后信号sig2的第一个极值点作为计数起始点b;可调谐激光器1的调制终止信号发出后,信号sig2的第一个极值点作为计数终止点s。
[0028] 步骤5、计算计数过程中,即点b和点s之间对应的时间段内,信号sig1和sig2的极值点数量,分别记为n1和n2。如图3所示,测量得到点b与信号sig1的第一个极值点f之间的相位为p1,点s与信号sig1的最后一个极值点e之间的相位为p2。
[0029] 步骤6、将测得的n1、n2、p1和p2代入如下测距公式得到逆反射棱镜4与准直透镜3的距离:
[0030]
[0031] 式中,dis为参考干涉系统的光程差,n为空气折射率,EV为参考干涉系统的干涉臂臂长补偿值。
[0032] 应用实例:
[0033] 如图2所示,将被测的逆反射棱镜4设置在距离测距系统约5.5m处,固定于纳米微动台上,设置可调谐激光器1的功率为10mW,调制范围为1530~1550nm,扫描速度为8nm/s,不等臂马赫增德尔干涉系统的光程差dis=44046mm。进行测量后得到n1=331459、n2=839082、p1=0.23、p2=0.02、EV=3229.124mm,计算得到被测逆反射棱镜4与准直透镜3的距离z=5470.532mm。为了证明测量分辨力,控制纳米微动台移动50μm进行第二次测量,得到测量结果为z=5470.589mm,证明了本发明的测量分辨力可以达到50μm。通过上述实例验证了利用该双干涉光路调频连续波激光测距信号处理方法可以实现高分辨力的调频连续波激光测距。
[0034] 尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

附图说明

[0018] 图1为本发明的流程图;
[0019] 图2为本发明中双干涉光路调频连续波激光测距系统的原理图;
[0020] 图3为本发明的高速数据采集系统采集到的信号示意图。
[0021] 图中:1、可调谐激光器,2、光环形器。3、准直透镜,4、逆反射棱镜,5、高速数据采集系统,6、第一光电探测器,7、第二光电探测器,8、延迟光纤。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号