首页 > 专利 > 南京信息工程大学 > 一种判别水下机器人姿态稳定的方法专利详情

一种判别水下机器人姿态稳定的方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2017-02-15
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2017-07-07
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2020-04-17
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2037-02-15
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201710081068.0 申请日 2017-02-15
公开/公告号 CN106840143B 公开/公告日 2020-04-17
授权日 2020-04-17 预估到期日 2037-02-15
申请年 2017年 公开/公告年 2020年
缴费截止日
分类号 G01C21/00 主分类号 G01C21/00
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 3
权利要求数量 4 非专利引证数量 1
引用专利数量 4 被引证专利数量 0
非专利引证 1、刘云平 等.四旋翼无人机偏航飞行过程量化稳定性分析《.南京理工大学学报》.2016,(第5期),高富东.复杂海况下新型水下航行器设计与关键技术研究《.中国博士学位论文全文数据库工程科技Ⅱ辑》.2014,(第4期),高富东.复杂海况下新型水下航行器设计与关键技术研究《.中国博士学位论文全文数据库工程科技Ⅱ辑》.2014,(第4期),;
引用专利 CN106054607A、CN104199447A、CN1779484A、WO2010027127A1 被引证专利
专利权维持 5 专利申请国编码 CN
专利事件 事务标签 公开、实质审查、授权
申请人信息
申请人 第一申请人
专利权人 南京信息工程大学 当前专利权人 南京信息工程大学
发明人 刘佳、蒋星宇、臧鹏飞、晏醒醒、司云腾 第一发明人 刘佳
地址 江苏省南京市浦口区宁六路219号 邮编 210044
申请人数量 1 发明人数量 5
申请人所在省 江苏省 申请人所在市 江苏省南京市
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
南京纵横知识产权代理有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
董建林
摘要
本发明公开了一种判别水下机器人姿态稳定的方法,其特征是,包括如下步骤:建立水下机器人的载体坐标系,并与地面坐标系进行坐标变换;通过传感器采集船体信息,并根据步骤一得到水下机器人的地面坐标系六自由度参数和系统状态;通过步骤一和步骤二将系统状态方程化处理,方便在MATLAB和Simulink环境下模拟;使用MATLAB对此模型系统进行稳定性分析,判断系统安全运行的工作范围。优点:1)建立水下机器人运动系坐标,有助于分析水下机器人水下运动情况;通过模拟,可以调试出遇到什么样的情况,系统会处于不稳定的状态,帮助设定水下机器人安全运行的工作范围。
  • 摘要附图
    一种判别水下机器人姿态稳定的方法
  • 说明书附图:图1
    一种判别水下机器人姿态稳定的方法
  • 说明书附图:图2
    一种判别水下机器人姿态稳定的方法
  • 说明书附图:图3
    一种判别水下机器人姿态稳定的方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2020-04-17 授权
2 2017-07-07 实质审查的生效 IPC(主分类): G01C 21/00 专利申请号: 201710081068.0 申请日: 2017.02.15
3 2017-06-13 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种判别水下机器人姿态稳定的方法,其特征是,包括如下步骤:
步骤一:建立水下机器人的载体坐标系,并与地面坐标系进行坐标变换;
步骤二:通过传感器采集船体信息,并根据步骤一得到水下机器人的地面坐标系六自由度参数和系统状态;
步骤三:通过步骤一和步骤二将系统状态方程化处理,方便在MATLAB和Simulink环境下模拟;
步骤四:使用MATLAB对此模型系统进行稳定性分析,判断系统安全运行的工作范围;
所述系统状态包括12个系统状态分别为:载体坐标系相对地面坐标系的x,y,z位置,θ,ψ表示x,y,z轴上的俯仰偏航角,定义u,v,w在x,y,z轴上的矢量分量,定义p,q,r为分别绕x,y,z轴旋转的角速度;
所述12个系统状态方程化如下:
在分析6自由度刚体的运动时需定义两个主坐标系,选择载体坐标系的原点ob作为物体对称的在主体对称的主平面上,通常被选择在以主体对称的主平面内,体轴Xb、Yb、Zb通常选择符合物体的惯性主轴,通常定义为:
Xb:纵轴,Yb:横轴,Zb:垂直轴,
载体坐标系与地面坐标系相关,相对于另一个坐标系的方向可以通过旋转矩阵 获得,坐标系x,y,z轴的单位向量用ia,ja,ka,得式:
容易证明载体坐标系变化后的定位与地面坐标系相关,通过载体坐标系关于地面坐标系简单旋转后实现,定义矩阵S(v')使得v'×w=S(v')w,即:
获得:
I是3×3的单位矩阵,α是载体坐标系的旋转角度,v'是载体坐标系旋转的单位向量,旋转矩阵 可以看作三个旋转矩阵的乘积:
其中俯仰角θ;偏航角ψ;横摇角 ,
一般用下面的向量来描述水下机器人运动的六个自由度:
η表示广义的位置矢量,x,y,z表示位置, θ,ψ表示俯仰偏航角;
现在将η作为载体坐标系相对于地面坐标系的位置,定义e,f,g为x,y,z轴上的矢量分量,定义p,q,r为分别绕x,y,z轴旋转的角速度,
V是载体相对于地面的速度,v是载体坐标系相对地面坐标系的广义速度矢量,η的导数与v和矩阵J(η)相关:
O3是一个3×3零矩阵,J1(η2)表示 ,
τ是作用在物体上的力,在一个三维空间中的刚体的运动可以表示为:
MRB随质心的运动,CRB绕质心的运动,
式中:
I3是3×3单位矩阵,m是物体的质量,bG是质量中心的位置, 是惯性张量,假设ρ(p)是物体在P点质量的密度,bP是p物体,Vol是它的容量,定义其它三个量为:
矩阵CRB逆矩阵MRB12没有唯一的参数化,同时它经常被表示为一个斜对称矩阵CRB(v)+CRBT(v)=0,如下所示:
将力矩向量τ1看作不同部分的总和:
τ1=τREST+τDAMP+τADD+τFK+τWAVE+τWIND+τEXT
τREST表示恢复力矩,由于重力和浮力,它是物体的位置和方向的函数通常由-g(η)表示:
bg是重力加速度,ρm是海水密度,bB是浮力中心,
τDAMP表示因不同类型阻尼而产生的力和力矩,这个向量通常取决于vr=v-vC,vC是水流速度,δ表示偏转表面的位置,D表示矩阵,它表示为:
τDAMP=-D(vr δ)r
τADD为附加质量力和力矩,由于周围流体的惯性,这些力量取决于相对于流体的物体的加速度,表示为:
MA和CA(vr)类似于MRB和CRB(v) ,
τWAVE表示由于风产生的波浪力,根据物体的速度和姿态,风速因素的影响,很明显,τWAVE一对于深海操作水下机器人为零,τWIND风的力对水下机器人也为零,最后,τEXT代表一般的外力,τFK推进器牵引力,将τFK和MAdvr/dt移动到式左边,CRB(v)移动到右边,定义τCOR为科里奥利力:
τCOR=-CRB(v)-CA(vr)vr
式(1)可以写为:
因此,运动学和动力学的最终方程:
其中:

2.根据权利要求1所述的一种判别水下机器人姿态稳定的方法,其特征是,所述运动稳定性分析:Lyapunov指数可以通过动力学方程获得,其计算公式为:
其中λ表示Lyapunov指数,x表示函数f(x)的自变量,n表示迭代次数。

3.根据权利要求1所述的一种判别水下机器人姿态稳定的方法,其特征是,所述步骤三中,使用MATLAB进行仿真,输入一个24维向量,包含:
(1)12个系统状态;
(2)外力和力矩相对于物体,6个元素,重力,浮力,随周围流体运动的力,波浪力,风的力,推进器的力;
(3)相对于地面坐标系的外部力和扭矩,4个元素,绕周围流体运动的力,水下机器人产生的波浪引起的阻尼,波浪漂移阻尼电缆的牵引力;
(4)相对于地面坐标系的海流的速度和加速度。

4.根据权利要求2所述的一种判别水下机器人姿态稳定的方法,其特征是,当所述Lyapunov指数小于0时,系统的相轨道吸引到一个稳定的固定点上,整个系统是稳定的;负的Lyapunov指数是耗散系统或者非保守系统的基本特征,而且这个负值越大相轨道收敛的越快,系统到达稳定状态的速度越快,当这个负值趋向于无穷大时系统是超稳定的;如果系统是稳定的,其Lyapunov指数中至少有一个小于0,并且所有指数之和同时小于0;当Lyapunov指数大于0时,系统是不稳定的或混沌的;Lyapunov指数为0时,相轨迹是周期性运动。
说明书

技术领域

[0001] 本发明涉及一种判别水下机器人姿态稳定的方法,属于水下机器人控制技术领域。

背景技术

[0002] 随着科技不断进步,越来越多的水下机器人降低了水域监测系统的工作成本,扩大水域监测系统的工作范围,提高水域监测系统的工作性能,实现了对大区域水域的低成本、高效率、智能化的可靠监测。水下机器人工作在复杂的水域中,需要在水里保持稳定的姿态来实现一系列的操作,但是工作在复杂海洋环境中,很难建立精确的动力学数学模型,水下机器人的各种任务要求其具有较高的运动稳定性和控制性能,因此水下机器人的运动稳定性至关重要。有必要有一种可靠的判定水下机器人姿态稳定的技术。

发明内容

[0003] 本发明所要解决的技术问题是克服现有技术的缺陷,提供判别水下机器人姿态稳定的方法,能够更好的判定水下机器人在水中的姿态,使得水下机器人在遇到复杂水域情况时,更加能够保持姿态不会倾覆,能够固定维持在某一地点,完成较长时间的探测。
[0004] 为解决上述技术问题,一种判别水下机器人姿态稳定的方法,其特征是,包括如下步骤:
[0005] 步骤一:建立水下机器人的载体坐标系,并与地面坐标系进行坐标变换;
[0006] 步骤二:通过传感器采集船体信息,并根据步骤一得到水下机器人的地面坐标系六自由度参数和系统状态;
[0007] 步骤三:通过步骤一和步骤二将系统状态方程化处理,方便在MATLAB和Simulink环境下模拟;
[0008] 步骤四:使用MATLAB对此模型系统进行稳定性分析,判断系统安全运行的工作范围。
[0009] 进一步地,所述运动稳定性分析:Lyapunov指数可以通过动力学方程获得,其计算公式为:
[0010]
[0011] 其中λ表示Lyapunov指数,x表示函数f(x)的自变量,n表示迭代次数;
[0012] 进一步地,所述系统状态包括12个系统状态分别为:载体坐标系相对地面坐标系的x,y,z位置, θ,ψ表示x,y,z轴上的俯仰偏航角,定义u,v,w在x,y,z轴上的矢量分量,定义p,q,r为分别绕x,y,z轴旋转的角速度。
[0013] 进一步地,所述12个系统状态方程化如下:
[0014] 在分析6自由度刚体的运动时需定义两个主坐标系,选择载体坐标系的原点ob作为物体对称的在主体对称的主平面上,通常被选择在以主体对称的主平面内,体轴Xb、Yb、Zb通常选择符合物体的惯性主轴,通常定义为:
[0015] Xb:纵轴,Yb:横轴,Zb:垂直轴
[0016] 载体坐标系与地面坐标系相关,相对于另一个坐标系的方向可以通过旋转矩阵获得,坐标系x,y,z轴的单位向量用ia,ja,ka表示,得式:
[0017]
[0018] 容易证明载体坐标系变化后的定位与地面坐标系相关,通过载体坐标系关于地面坐标系简单旋转后实现,定义矩阵S(v')使得v'×w=S(v')w,即:
[0019]
[0020] 获得:
[0021]
[0022] I是3×3的单位矩阵,α是载体坐标系的旋转角度,v'是载体坐标系旋转的单位向量,旋转矩阵 可以看作三个旋转矩阵的乘积:
[0023]
[0024] 其中俯仰角θ;偏航角ψ;横摇角
[0025] 一般用下面的向量来描述水下机器人运动的六个自由度:
[0026]
[0027] η表示广义的位置矢量,x,y,z表示位置, θ,ψ表示俯仰偏航角。
[0028] 现在将η作为载体坐标系相对于地面坐标系的位置,定义u,v,w在x,y,z轴上的矢量分量,定义p,q,r为分别绕x,y,z轴旋转的角速度,
[0029]
[0030] V是载体相对于地面的速度,v是载体坐标系相对地面坐标系的广义速度矢量,η的导数与v和矩阵J(η)相关:
[0031]
[0032] O3是一个3×3零矩阵,J1(η2)表示
[0033] τ是作用在物体上的力,在一个三维空间中的刚体的运动可以表示为:
[0034] MRB随质心的运动,CRB绕质心的运动,
[0035]
[0036] 式中:
[0037]
[0038] I3是3×3单位矩阵,m是物体的质量,bG是质量中心的位置, 是惯性张量,假设ρ(p)是物体在P点质量的密度,bP是p物体,Vol是它的容量,定义其它三个量为:
[0039]
[0040]
[0041]
[0042] 矩阵CRB逆矩阵MRB12没有唯一的参数化,同时它经常被表示为一个斜对称矩阵(CRB(v)+CRBT(v)=0),如下所示:
[0043]
[0044] 将力矩向量τ1看作不同部分的总和:
[0045] τ1=τREST+τDAMP+τADD+τFK+τWAVE+τWIND+τEXT
[0046] τREST表示恢复力矩,由于重力和浮力,它是物体的位置和方向的函数通常由-g(η)表示:
[0047]
[0048] bg是重力加速度,ρm是海水密度,bB是浮力中心
[0049] τDAMP表示因不同类型阻尼而产生的力和力矩,这个向量通常取决于vr=v-vC,vC是水流速度,δ表示偏转表面的位置,D表示矩阵,它表示为:
[0050] τDAMP=-D(vr δ)r
[0051] τADD为附加质量力和力矩,由于周围流体的惯性,这些力量取决于相对于流体的物体的加速度,表示为:
[0052]
[0053] MA和CA(Vr)类似于MRB和CRB(v)
[0054] τWAVE表示由于风产生的波浪力,根据物体的速度和姿态,风速因素的影响,很明显,τWAVE一对于深海操作水下机器人为零,τWIND风的力对水下机器人也为零,最后,τEXT代表一般的外力,τFK推进器牵引力,将τFK和MAdvr/dt移动到式左边,CRB(v)移动到右边,定义τCOR为科里奥利力:
[0055] τCOR=-CRB(v)-CA(Vr)Vr
[0056] 式(1)可以写为:
[0057]
[0058] 因此,运动学和动力学的最终方程:
[0059]
[0060]
[0061] 其中:
[0062]
[0063] 进一步地,所述步骤三中,使用MATLAB进行仿真,输入一个24维向量,包含:
[0064] (1)12个系统状态;
[0065] (2)外力和力矩相对于物体,6个元素,重力,浮力,随周围流体运动的力,波浪力,风的力,推进器的力;
[0066] (3)相对于地面坐标系的外部力和扭矩,4个元素,绕周围流体运动的力,水下机器人产生的波浪引起的阻尼,波浪漂移阻尼电缆的牵引力;
[0067] (4)相对于地面坐标系的海流的速度和加速度。
[0068] 进一步地,当所述Lyapunov指数小于0时,系统的相轨道吸引到一个稳定的固定点上,整个系统是稳定的;负的Lyapunov指数是耗散系统或者非保守系统的基本特征,而且这个负值越大相轨道收敛的越快,系统到达稳定状态的速度越快,当这个负值趋向于无穷大时系统是超稳定的;如果系统是稳定的,其Lyapunov指数中至少有一个小于0,并且所有指数之和同时小于0;当Lyapunov指数大于0时,系统是不稳定的或混沌的;Lyapunov指数为0时,相轨迹是周期性运动。
[0069] 本发明所达到的有益效果:
[0070] 1)建立水下机器人运动系坐标,有助于分析水下机器人水下运动情况;2)建立水下机器人六自由度模型,帮助分析水下机器人在水中六个自由度的情况;3)利用李雅普诺夫指数分析机器人是否处于稳定情况,帮助改进系统的稳定性;4)通过模拟,可以调试出遇到什么样的情况,系统会处于不稳定的状态,帮助设定水下机器人安全运行的工作范围。

实施方案

[0074] 下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
[0075] 如图1所示,图1中,在分析6自由度刚体的运动时需定义两个主坐标系。将移动坐标系固定在水下机器人上,称为载体坐标系。选择载体坐标系的原点ob,通常被选择在以主体对称的主平面内,体轴Xb、Yb、Zb通常选择符合物体的惯性主轴,通常定义为:Xb:纵轴(从后到前);Yb:横轴(向右舷);Zb:垂直轴(方向从上到下)。
[0076] 载体坐标系与地面坐标系相关,相对于另一个坐标系的方向可以通过旋转矩阵获得,比如 如果坐标系x,y,z轴的单位向量用ia,ja,ka表示,得式:
[0077]
[0078] 容易证明载体坐标系变化后的定位与地面坐标系相关,通过载体坐标系关于地面坐标系简单旋转后实现。定义矩阵S(v)使得v×w=S(v)w,即:
[0079]
[0080] 获得:
[0081]
[0082] I是3×3的单位矩阵,α是载体坐标系的旋转角度,v是载体坐标系旋转的单位向量。旋转矩阵 可以看作三个旋转矩阵的乘积:
[0083]
[0084] 其中俯仰角θ;偏航角ψ;横摇角
[0085] 一般用下面的向量来描述水下机器人运动的六个自由度:
[0086]
[0087] η表示广义的位置矢量,x,y,z表示位置, θ,ψ表示俯仰偏航角。
[0088] 运动学和动力学的方程:
[0089]
[0090]
[0091] 其中:
[0092]
[0093] 这些方程描述了动态系统的12个状态,可以很容易地在MATLAB和Simulink环境下模拟。
[0094] Lyapunov指数可以通过动力学方程获得,其计算公式为:
[0095]
[0096] 输入这些和物体结构相关的信息来计算系统状态及精确描述方程,同时系统状态导数可以由数值积分获得,以评估系统的时间状态。
[0097] 输入当时系统的各个状态量,可以判断出,该系统在当时是否稳定,达到判定当时系统稳定的作用。
[0098] 如图2所示,输出块显示随时间的范围,其中最后显示速度。下面的数字已经产生运行上面的模拟和绘制在X-Y平面的位置和速度。
[0099] 如图3所示,当进行位姿保持稳定运动控制时,设定η=[0 0 0]T,v=[3m/s 0 0]T,δ=[0 0 0 0 0 0]T,τ=[416N 0 0 0 0 0]T。此时,Lyapunov指数稳定到负的常数,系统能够稳定的运动到期望位姿。
[0100] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

附图说明

[0071] 图1是参考坐标系示意图;
[0072] 图2是水下机器人Matlab/Simulink系统图;
[0073] 图3是位姿保持时Lyapunov指数图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号