[0021] 应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
[0022] 需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
[0023] 本申请所述的铃木反应,也称作Suzuki偶联反应、Suzuki-Miyaura反应(铃木-宫浦反应),是一个较新的有机偶联反应,零价钯配合物催化下,芳基或烯基硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。
[0024] 本申请所述的诺文格尔偶联反应,Knoevenagel反应是指醛或酮在弱碱(胺、吡啶等)催化下,与具有活泼α-氢原子的化合物缩合的反应。
[0025] 正如背景技术所介绍的,针对AIE分子的优良性能,为了提供一种新的具有集诱导发光的现象的化合物,本申请提出了一种一取代五元杂环的巴比妥酸衍生物及其制备方法。
[0026] 本申请的一种典型实施方式,提供了一种一取代五元杂环的巴比妥酸衍生物,其化学结构式为:
[0027]
[0028] 本申请首次合成了基于噻吩或呋喃的巴比妥酸衍生物,并通过实验发现该衍生物都表现出溶剂化变色效应:随着溶剂极性的增加,荧光光谱红移。
[0029] 本申请的另一种实施方式,提供了一种上述衍生物的制备方法,将含有呋喃基团或含有噻吩基团的有机物与4-甲酰基苯基的有机物进行铃木反应获得中间体,将中间体与1,3-二甲基巴比妥酸进行诺文格尔偶联反应后,即可获得上述衍生物,
[0030] 所述中间体的化学结构式为:
[0031] 所述含有呋喃基团的有机物可以为呋喃-2-硼酸,也可以为2-溴呋喃。
[0032] 所述含有噻吩基团的有机物可以为噻吩-2-硼酸,也可以为2-溴噻吩。
[0033] 所述4-甲酰基苯基的有机物可以为4-溴苯甲醛,也可以为4-甲酰基苯基硼酸。
[0034] 优选的,含有呋喃基团或含有噻吩基团的有机物与4-甲酰基苯基的有机物的摩尔比为1:1~1.4。
[0035] 优选的,所述铃木反应的步骤为:将呋喃-2-硼酸、4-溴苯甲醛和碳酸钾分散至N,N-二甲基甲酰胺中,在惰性气体氛围下,加入乙酸钯、三苯基膦,加热反应。
[0036] 反应简式为:
[0037]
[0038] 或者,将2-溴噻吩、4-甲酰基苯基硼酸和碳酸钾分散至N,N-二甲基甲酰胺中,在惰性气体氛围下,加入四(三苯基膦)钯,加热反应。
[0039] 反应简式为:
[0040]
[0041] 本申请所述的惰性气体是指能够阻碍氧气氧化反应气体,如氮气、氦气、氩气等。
[0042] 优选的,铃木反应的温度为85~95℃。铃木反应的时间为6~8h。
[0043] 优选的,诺文格尔偶联反应的步骤为:将中间体与1,3-二甲基巴比妥酸加入至乙酸和乙酸酐的混合溶液中加热回流反应。
[0044] 进一步优选的,乙酸和乙酸酐的体积比为1:0.9~1.1。
[0045] 优选的,将中间体与1,3-二甲基巴比妥酸的摩尔比为1:1~1.1。
[0046] 优选的,诺文格尔偶联反应的时间为3~4h。
[0047] 本申请的第三种实施方式,提供了一种上述衍生物在传感器领域或细胞成像领域中的应用。
[0048] 为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
[0049] 实施例1
[0050] (1)2-(4-甲酰基苯基)-呋喃(2-(4-formylphenyl)oxole)FO
[0051] 在100mL的三口烧瓶中,加入2-呋喃硼酸(0.559g,5mmol),4-溴苯甲醛(0.925g,5mmol),K2CO3(0.696g,1N)以及N,N-二甲基甲酰胺(10mL)。首先,在N2氛围下搅拌30分钟,除去反应器中残存的空气,然后加入乙酸钯(9mg),三苯基膦(60mg)。在90℃下反应6小时。待反应完成,冷却至常温,溶于二氯甲烷并依次用水(50ml)洗涤,有机层用Na2SO4干燥除水。最后,通过柱色谱分离方法提纯,产物深绿色油状0.65g,产率为84%。1H NMR(CDCl3)δ(ppm):
8.18(d,1H),7.74(d,1H),7.58(d,1H),7.46(m,3H),7.31(m,1H),7.16(m,1H)。
[0052] (2)巴比妥酸衍生物FOB-1
[0053] 将1,3-二甲基巴比妥酸(5mmol)和FO(5mmol)在乙酸(10mL)和乙酸酐(10mL)中的混合溶液中回流反应3小时。将反应结束后的溶液冷却至常温,最后并过滤固体,产物通过柱色谱分离纯化,得到红褐色粉末1.141g(FOB-1),产率70%。1H NMR(CDCl3)δ(ppm):8.26(d,1H),7.86(d,1H),7.60(t,2H),7.42(m,2H),7.06(m,2H)。
[0054] 反应式为:
[0055]
[0056] 实施例2
[0057] (1)2-(4-甲酰基苯基)噻吩(2-(4-formylphenyl)thiophene)FT
[0058] 将2-溴噻吩(0.489g,3mmol),4-甲酰基苯基硼酸(0.60g,4mmol),K2CO3(0.696g,1N)和N,N-二甲基甲酰胺(20mL)加入到100mL的三口烧瓶中。在N2保护下混合30分钟,放入四(三苯基膦)钯(0.115g,0.1mmol),在90℃下搅拌反应6小时。自然冷却至常温,粗产品溶于二氯甲烷中,用水(100ml)洗涤。有机溶液用MgSO4干燥除水。最后产物用乙酸乙酯重结晶,获得黄色固体0.46g,产率为89%。1H NMR(CDCl3)δ(ppm):10.02(s,1H),7.90(d,2H),
7.79(m,2H),7.49(d,1H),7.45(d,1H),7.34(t,1H)。
[0059] (2)巴比妥酸衍生物FTB-1
[0060] 将1,3-二甲基巴比妥酸(5mmol)和FT(5mmol)在乙酸(10ml)和乙酸酐(10ml)中的混合溶液中回流反应3小时。将反应结束后的溶液冷却至常温,最后并过滤固体,产物通过1
柱色谱分离纯化,得到黄色固体粉末0.840g(FTB-1),产率86%。H NMR(CDCl3)δ(ppm):8.56(s,1H),8.20(d,2H),7.73(d,2H),7.50(m,1H),7.42(m,1H)7.15(m,1H),3.44(m,6H)。
[0061] 反应式为:
[0062]
[0063] 理化性质
[0064] 制备的FOB-1和FTB-1在典型的有机溶剂如THF,DMF,DCM和DMSO等溶剂中显示出良好的溶解性,但它们几乎不溶于水。
[0065] 光学性质
[0066] FOB-1和FTB-1的紫外可见吸收光谱如图1所示。在270~350nm范围内的吸收带源自于呋喃和噻吩单元的π-π*电子跃迁。化合物FOB-1和FTB-1分别在457nm和392nm分别表现出的强吸收峰,这可归因于来自呋喃和噻吩单元到吸电子基1,3-二甲基巴比妥酸部分的分子内电荷转移(ICT)。
[0067] 为了测定化合物FOB-1和FTB-1的聚集诱导荧光活性,测试了其不同fw的THF/H2O混合溶剂系统中的荧光行为。如图2a~b所示,在纯的稀THF溶液中,FOB-1的发射峰出现在436nm处,但此时的荧光强度非常弱,ФF仅为0.31%。出现这种现象的原因可能是化合物FOB-1的活性分子内可旋转基团的旋转作为激发态的弛豫通道。在稀溶液中,FOB-1以分子形式存在,分子之间的空间位阻和互相作用力几乎可以忽略不计。在这种情况下,分子内可旋转基团的旋转运动是相对自由的,这就加速了非辐射路径并最终导致了溶液中几乎不发射荧光。由于水是不良溶剂,向充分溶解的溶液体系中加入一定量的水,会使混合溶剂的溶剂化能力下降,溶剂无法完全溶解分子,分子开始发生自组装行为,聚集体的生成并进一步导致其光谱的变化。如图2b所示,FOB-1在THF中发出弱荧光。溶液状态下FOB-1的微弱荧光是由于芳环围绕单键的自由旋转引起的非辐射松弛。但是随着fw的增加,FOB-1的荧光强度也随之增加,与此同时还发现发射波长伴随着大的红移。相应的发射峰显示近60nm的红移,并且直到fw=70%时化合物FOB-1达到最大荧光强度。这种现象可能与溶剂极性的增加导致从LE到TICT态的转变有关,发生在含有电子供体(D)和电子受体(A)的分子中。溶剂效应会同时使分子的HOMO和LUMO稳定,但对LUMO的稳定程度更大,从而导致带隙变窄,发射光谱发生红移。此外,由于化合物的分子内旋转受限(RIR),FOB-1的荧光强度比纯THF中的强度提高40.5倍(如表1所示)。然而,当在化合物的纯THF溶液中加入水时,分子开始在有限的空间内聚集,并且在一定程度上阻挡分子内可旋转基团的自由旋转,这使辐射跃迁途径活跃并导致荧光发射增强。如图2b在较大的水含量时,进一步添加水会导致化合物荧光强度的降低。主要原因是:当fw超过70%时,部分聚集的分子开始沉淀,THF/H2O混合溶剂中的荧光团减少,导致溶液的荧光强度减弱。
[0068] 表1 FOB-1和FTB-1的光物理数据
[0069]
[0070] 由于化合物FOB-1和FTB-1的D-π-A型结构,检测了其化合物的溶剂化变色性质。如图3所示,随着溶剂由甲苯变为DMF,对于FOB-1、FTB-1分别显示49nm、27nm的荧光光谱红移。这些变化归因于化合物激发态比基态更大偶极矩和电荷分离程度。证实了在这些化合物中明显ICT特性。
[0071] 如图2c~d所示,在纯THF中,FTB-1在440nm处显示弱发射。当fw<40%时,溶剂中的FTB-1依然是以分子形式存在,随着fw的增大,THF/H2O混合溶剂的极性逐渐变大,FTB-1的荧光强度却表现出逐渐下降的现象,这是分子内电荷转移(ICT)典型特征。但是,当fw>40%时,荧光强度迅速增强的原因是纳米颗粒的形成。当fw从0%增加到90%时,由于分子内旋转受限(RIR),FTB-1的荧光强度增加了46.8倍,ΦF从0.8%增加到12.3%。这些数据表明FTB-1是聚集诱导荧光活性分子。
[0072] 为了更好地了解它们的光学性质,利用B3LYP/6-31G(d)基组的DFT进行了理论计算。化合物FOB-1和FTB-1的优化几何构型和HOMO、LUMO。它们的几何优化结构表现出高度扭曲的构象,这有利于溶液中多个苯环基团的活性分子内旋转,从而有效地消耗激子能量并使其在溶剂中不发光或弱发射。对于FOB-1、FTB-1,HOMO和LUMO之间的能隙分别为3.25、3.34eV。其HOMO位于供体呋喃和噻吩单元上,LUMO主要分布在受体巴比妥酸部分。该结果进一步说明发生了从供体到受体部分的ICT过程。
[0073] 力致变色(MFC)性能
[0074] 使用研钵和杵研磨化合物FTB-1的MFC特性。图4中示出了外部压力下的典型荧光光谱。发现FTB-1显示橙黄色。研磨刺激后,显示明显的颜色变化。FTB-1的MFC数据在表2显示。
[0075] 表2 FOB-1,FTB-1在不同条件下的峰值发射波长
[0076]
[0077] 为了进一步探索FTB-1的MFC机理,进行了样品的X射线衍射(XRD)测试,结果如图5所示。如图5所示,化合物FTB-1的XRD曲线在研磨之前和之后表现出不同的分子聚集结构。如图5所示,FTB-1的XRD曲线在研磨之前显示出许多强烈而尖锐的衍射曲线,表明的化合物分子有序排列晶体形式。然而,当研磨处理之后,许多衍射曲线发生了减弱或甚至消失,这意味着化合物从有序排列变为无定形结构。XRD结果表明,经过研磨处理之后,化合物有序的分子堆积形式被破坏,导致堆积方式从有序到无序。研磨后的粉末用二氯甲烷蒸气熏制后,XRD的衍射峰可以恢复到原始粉末状态。XRD光谱变化表明研磨后的无序状态在发烟过程中恢复到结晶状态。因此,FTB-1的MFC行为机理可以归因于晶态与非晶态之间的相变过程,并且该过程是可逆的。
[0078] 以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。