首页 > 专利 > 上海斐讯数据通信技术有限公司 > 一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法专利详情

一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法   0    0

有效专利 查看PDF
专利申请流程有哪些步骤?
专利申请流程图
申请
申请号:指国家知识产权局受理一件专利申请时给予该专利申请的一个标示号码。唯一性原则。
申请日:提出专利申请之日。
2015-11-24
申请公布
申请公布指发明专利申请经初步审查合格后,自申请日(或优先权日)起18个月期满时的公布或根据申请人的请求提前进行的公布。
申请公布号:专利申请过程中,在尚未取得专利授权之前,国家专利局《专利公报》公开专利时的编号。
申请公布日:申请公开的日期,即在专利公报上予以公开的日期。
2016-05-11
授权
授权指对发明专利申请经实质审查没有发现驳回理由,授予发明专利权;或对实用新型或外观设计专利申请经初步审查没有发现驳回理由,授予实用新型专利权或外观设计专利权。
2018-09-28
预估到期
发明专利权的期限为二十年,实用新型专利权期限为十年,外观设计专利权期限为十五年,均自申请日起计算。专利届满后法律终止保护。
2035-11-24
基本信息
有效性 有效专利 专利类型 发明专利
申请号 CN201510824790.X 申请日 2015-11-24
公开/公告号 CN105490805B 公开/公告日 2018-09-28
授权日 2018-09-28 预估到期日 2035-11-24
申请年 2015年 公开/公告年 2018年
缴费截止日 2021-12-24
分类号 H04L9/08H04B10/70 主分类号 H04L9/08
是否联合申请 独立申请 文献类型号 B
独权数量 1 从权数量 8
权利要求数量 9 非专利引证数量 1
引用专利数量 4 被引证专利数量 0
非专利引证 1、刘佳.相位编码QKD中的相位补偿方法研究. 《中国优秀硕士学位论文全文库信息科技辑》.2014,(第09期),;
引用专利 CN103929300A、US2013315211A1、CN102868520A、CN104301101A 被引证专利
专利权维持 5 专利申请国编码 CN
专利事件 转让 事务标签 公开、实质审查、授权、权利转移
申请人信息
申请人 第一申请人
专利权人 上海斐讯数据通信技术有限公司 当前专利权人 长兴吕山金鹭孵化器有限公司
发明人 韩子英 第一发明人 韩子英
地址 上海市松江区思贤路3666号 邮编 201616
申请人数量 1 发明人数量 1
申请人所在省 上海市 申请人所在市 上海市松江区
代理人信息
代理机构
专利代理机构是经省专利管理局审核,国家知识产权局批准设立,可以接受委托人的委托,在委托权限范围内以委托人的名义办理专利申请或其他专利事务的服务机构。
杭州千克知识产权代理有限公司 代理人
专利代理师是代理他人进行专利申请和办理其他专利事务,取得一定资格的人。
周希良
摘要
本发明提供一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法,采用扩展卡尔曼滤波算法来实时获取相位漂移参数值,利用相位与电压的关系,将最终的电压差通过反馈链路送达接收端的相位调制器,从而控制相位调制器相位的变化,达到实时的主动相位补偿。本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法减少了获取相位漂移参数的运算量和运行时间,加快了相位漂移参数曲线的收敛速度,实现了实时获取相位漂移参数,收敛速度快,效率高;提高了QKD系统的稳定性,降低了误码率;只采用数学方法就可求得相位漂移参数,不需要增加硬件和软件设置,且计算量小;实现了QKD系统的长距离传输。
  • 摘要附图
    一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法
  • 说明书附图:图1
    一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法
  • 说明书附图:图2
    一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法
  • 说明书附图:图3
    一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法
  • 说明书附图:图4
    一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法
法律状态
序号 法律状态公告日 法律状态 法律状态信息
1 2020-12-29 专利权的转移 登记生效日: 2020.12.16 专利权人由上海斐讯数据通信技术有限公司变更为长兴吕山金鹭孵化器有限公司 地址由201616 上海市松江区思贤路3666号变更为313105 浙江省湖州市长兴县吕山乡金村村
2 2018-09-28 授权
3 2016-05-11 实质审查的生效 IPC(主分类): H04L 9/08 专利申请号: 201510824790.X 申请日: 2015.11.24
4 2016-04-13 公开
权利要求
权利要求书是申请文件最核心的部分,是申请人向国家申请保护他的发明创造及划定保护范围的文件。
1.一种基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:包括以下步骤:
步骤S1、通过准单光子源生成器生成准单光子源;
步骤S2、通过第一偏振分束器将光脉冲序列分解为两个正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第一相位调制器对第一光子支路的第一光量子态进行相位编码调制;通过第二偏振分束器将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;
步骤S3、通过第三偏振分束器将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第二相位调制器对第二光子支路的第二光量子态进行相位编码调制;通过第四偏振分束器将第一光子支路的第一光量子态和第二光子支路调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器或第二单光子探测器;
步骤S4、以至少一个调制周期的相位范围对第二相位调制器的调制电压进行逐点扫描,从最小电压一直扫描到最大电压,在扫描的每个调制电压上都进行N个光脉冲的计数累计,并记录该调制电压点对应的光子累计数值;当完成一个调制周期上的所有电压点的扫描后,得到一组电压单光子数;
步骤S5、根据电压单光子数和QKD系统的干涉输出方程得到系统方程和量测方程,再利用扩展卡尔曼滤波算法进行计算,以得到某时刻的相位漂移参数;
步骤S6、若 则将相位漂移参数值 通过反馈链路送达接收端的第二相位调制器,以进行相位漂移的实时主动补偿;若 不作处理;
所述步骤S5中,
所述系统方程为:
其中,所述系统方程表示当前时刻的值等于前一时刻的值;
所述量测方程:
其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值, 为相位漂移参数,V为调制电压。

2.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S2中,设定第一相位调制器的调制电压值固定为0V,对应的相位为0。

3.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S3中,经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。

4.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S5中,QKD系统的干涉输出方程为:
其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值; 为相位差。

5.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S5中,进行扩展卡尔曼滤波计算时,需对系统方程和量测方程进行线性化,以得到系统矩阵和量测矩阵;
所述系统矩阵为
所述量测矩阵为
其中:

6.根据权利要求5所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S5中,进行扩展卡尔曼滤波计算时,根据系统方程、量测方程、系统矩阵和量测矩阵,利用如下公式计算实时相位漂移参数
预测方程:
预测协方差方程:
卡尔曼增益:
滤波方程:
滤波协方差:

7.根据权利要求1所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:所述步骤S6中,进行相位漂移补偿时,通过控制第二相位调制器上的调制电压来获取相位变化值 其中:
其中,Vhalf为第二相位调制器的半波电压,Vi为外加调制电压。

8.一种基于扩展卡尔曼滤波降低QKD系统误码率的系统,用于实现权利要求1-7任一项所述的基于扩展卡尔曼滤波降低QKD系统误码率的方法,其特征在于:包括发送端和接收端;
所述发送端包括准单光子源生成器、第一相位调制器、第一偏振分束器和第二偏振分束器;所述准单光子源生成器用于生成准单光子源,所述第一偏振分束器用于将单光子脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第一相位调制器用于对第一光子支路的第一光量子态进行相位编码调制;所述第二偏振分束器用于将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;
所述接收端包括第二相位调制器、第三偏振分束器、第四偏振分束器、第一单光子探测器、第二单光子探测器和扩展卡尔曼滤波模块;所述第三偏振分束器用于将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第二相位调制器用于对第二光子支路的第二光量子态进行相位编码调制;
所述第四偏振分束器用于将第一光子支路的第一光量子态和第二光子支路的调制后的第二光量子态进行相干合成,并将输出的光子送入所述第一单光子探测器或所述第二单光子探测器;所述第一单光子探测器和所述第二单光子探测器用于探测输出的单光子数,从而得到QKD系统的测量值;所述扩展卡尔曼滤波模块用于根据对所述第一单光子探测器和所述第二单光子探测器输出的单光子数和所述第二相位调制器的调制电压进行实时采样,实时获取相位漂移参数,并反馈至所述第二相位调制器。

9.根据权利要求8所述的基于扩展卡尔曼滤波降低QKD系统误码率的系统,其特征在于:经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。
说明书

技术领域

[0001] 本发明涉及量子通信的技术领域,特别是涉及一种基于扩展卡尔曼滤波降低量子密钥分发(Quantum Key Distribution,QKD)系统误码率的方法及系统。

背景技术

[0002] 量子通信以量子物理学与密码学为基础,结合海森堡测不准原理和不可克隆定理等基本特性,因其容量大、安全性高、对窃听行为可检测等优点为信息的安全传输提供了新的思路,成为一种新兴的通信技术。而对于量子通信的误码问题,主要有两个来源:一个是由于窃听者的窃听行为造成的;另一个是系统的不稳定性造成误码,属于量子密钥分发技术上的问题。
[0003] 现有解决误码率的技术方案主要包括以下两种:
[0004] (1)首先在主动相位补偿的阶段,窃听者通过调节插入在长程光纤中相位调制器改变发送端发送的单光子波包之间的相位差,使发送者的四个工作点的量子态变成非标准BB84状态;其次在量子密钥分发阶段,窃听者对发送端发送给接收端的量子态进行截获测量并重发。但是,该方法主要是从窃听行为的安全性考虑,并没有解决相位漂移问题,且只采集了四个特征性的工作点,没有做到大量数据验证,结果的精准度不能得到保证。
[0005] (2)首先进行相位估计,利用求互相关方式计算相位漂移的角度;其次进行相位补偿,根据估计的相位漂移值,对数据进行相位补偿。但是,该方法用互相关性求相位漂移角度,每次至少需要计算完一组数据才可以得出相位差,实时性差,效率低,且运行时间长,导致精确度低,不适合进行长距离传输。
[0006] QKD系统是一种新兴的通信技术,已经广泛应用于军事、电子商务等领域。但QKD系统在信息传输过程中,容易受到外界环境的影响,尤其是相位漂移问题,严重影响系统的稳定性和抗干扰性,使得信息传输产生较大的误码率。
[0007] 现有技术中,已有多种技术方案来解决QKD系统相位漂移的问题。如申请号为201410179045.X,发明名称为《一种基于单向量子密钥分发系统主动相位补偿的攻击方法》公开一种基于单向量子密钥分发系统主动相位补偿的攻击方法,包括两部分:第一部分,在主动相位补偿的阶段,Eve通过在量子信道中插入相位调制器,对其进行选择性相位调制,以改变Alice发送的量子态所携带的相位信息,使其变成非标准BB84状态;第二部分,在量子密钥分发阶段Eve做攻击,Eve截获Alice发送给Bob的量子态,并选择测量算子M0进行半正定算子POVM测量,在得到测量结果后,以α:β的比例随机的发送标准的BB84状态0和给Bob,其中α+β=1。再如,申请号为201410567665.0、发明名称为《一种量子密钥分发系统相位补偿方法》公开一种量子密钥分发系统相位补偿方法,包括步骤如下:步骤A:相位估计步骤,是指利用求互相关方式计算相位漂移的角度;步骤B:相位补偿步骤,是指根据步骤A所估计的相位漂移值,对数据进行相位补偿。
[0008] 然而,上述现有的解决QKD系统相位漂移方案中,若采集的数据点不够,则没有说服力,而且会产生更大的误码率;若采集的数据点足够多,则计算量大,每次都需对一组数据进行计算结束,才可得出相位漂移值,导致得出相位漂移结果的时间长,实时性差,不能将结果实时反馈给系统,增大了系统的误差。

发明内容

[0009] 鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法,利用扩展卡尔曼滤波算法来实时获取相位漂移参数,利用相位与电压的关系,将最终的电压差通过反馈链路送达接收端相位调制器,从而控制相位调制器相位的变化,达到实时的主动相位补偿,实时性好,收敛速度快,适合于高精度要求的动态系统。
[0010] 为实现上述目的及其他相关目的,本发明提供一种利用卡尔曼滤波降低QKD系统误码率的系统,包括发送端和接收端;所述发送端包括准单光子源生成器、第一相位调制器、第一偏振分束器和第二偏振分束器;所述准单光子源生成器用于生成准单光子源,所述第一偏振分束器用于将单光子脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第一相位调制器用于对第一光子支路的第一光量子态进行相位编码调制;所述第二偏振分束器用于将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;所述接收端包括第二相位调制器、第三偏振分束器、第四偏振分束器、第一单光子探测器、第二单光子探测器和扩展卡尔曼滤波模块;所述第三偏振分束器用于将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;所述第二相位调制器用于对第二光子支路的第二光量子态进行相位编码调制;所述第四偏振分束器用于将第一光子支路的第一光量子态和第二光子支路的调制后的第二光量子态进行相干合成,并将输出的光子送入所述第一单光子探测器或所述第二单光子探测器;所述第一单光子探测器和所述第二单光子探测器用于探测输出的单光子数,从而得到QKD系统的测量值;所述扩展卡尔曼滤波模块用于根据对所述第一单光子探测器和所述第二单光子探测器输出的单光子数和所述第二相位调制器的调制电压进行实时采样,实时获取相位漂移参数,并反馈至所述第二相位调制器。
[0011] 于本发明一实施例中,经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。
[0012] 同时,本发明还提供一种基于扩展卡尔曼滤波降低QKD系统误码率的方法,包括以下步骤:
[0013] 步骤S1、通过准单光子源生成器生成准单光子源;
[0014] 步骤S2、通过第一偏振分束器将光脉冲序列分解为两个正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第一相位调制器对第一光子支路的第一光量子态进行相位编码调制;通过第二偏振分束器将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输;
[0015] 步骤S3、通过第三偏振分束器将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第二相位调制器对第二光子支路的第二光量子态进行相位编码调制;通过第四偏振分束器将第一光子支路的第一光量子态和第二光子支路调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器或第二单光子探测器;
[0016] 步骤S4、以至少一个调制周期的相位范围对第二相位调制器的调制电压进行逐点扫描,从最小电压一直扫描到最大电压,在扫描的每个调制电压上都进行N个光脉冲的计数累计,并记录该调制电压点对应的光子累计数值;当完成一个调制周期上的所有电压点的扫描后,得到一组电压单光子数;
[0017] 步骤S5、根据电压单光子数和QKD系统的干涉输出方程得到系统方程和量测方程,再利用扩展卡尔曼滤波算法进行计算,以得到某时刻的相位漂移参数;
[0018] 步骤S6、若 则将相位漂移参数值 通过反馈链路送达接收端的第二相位调制器,以进行相位漂移的实时主动补偿;若 不作处理。
[0019] 于本发明一实施例中,所述步骤S2中,设定第一相位调制器的调制电压值固定为0V,对应的相位为0。
[0020] 于本发明一实施例中,所述步骤S3中,经过所述第四偏振分束器相干合成后,第一光量子态和第二光量子态之间相位差若在0~π之间,则输出的光子进入所述第一单光子探测器,若在-π~0之间,则输出的光子进入所述第二单光子探测器。
[0021] 于本发明一实施例中,所述步骤S5中,QKD系统的干涉输出方程为:
[0022]
[0023] 其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值。
[0024] 于本发明一实施例中,所述步骤S5中,
[0025] 所述系统方程为:
[0026]
[0027] 所述量测方程:
[0028]
[0029] 其中,Nout是单光子输出计数值,Nmax是一个周期内最大单光子输出值,Nmin是一个周期内最小单光子输出值, 为相位漂移参数,V为调制电压。
[0030] 于本发明一实施例中,所述步骤S5中,进行扩展卡尔曼滤波计算时,需对系统方程和量测方程进行线性化,以得到系统矩阵和量测矩阵;
[0031] 所述系统矩阵为
[0032] 所述量测矩阵为
[0033] 其中:
[0034]
[0035]
[0036] 于本发明一实施例中,所述步骤S5中,进行扩展卡尔曼滤波计算时,根据系统方程、量测方程、系统矩阵和量测矩阵,利用如下公式计算实时相位漂移参数[0037] 预测方程:
[0038] 预测协方差方程:
[0039] 卡尔曼增益:
[0040] 滤波方程:
[0041] 滤波协方差:Q(k|k)=[I-KkHk]Q(k|k-1)[I-KkHk]T+KkRkKkT。
[0042] 于本发明一实施例中,所述步骤S6中,进行相位漂移补偿时,通过控制第二相位调制器上的调制电压来获取相位变化值 其中:
[0043]
[0044] 其中,Vhalf为第二相位调制器的半波电压,Vi为外加调制电压。
[0045] 如上所述,本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法,具有以下有益效果:
[0046] (1)减少了获取相位漂移参数的运算量和运行时间,加快了相位漂移参数曲线的收敛速度,实现了实时获取相位漂移参数,收敛速度快,效率高;
[0047] (2)提高了QKD系统的稳定性,降低了误码率;
[0048] (3)只采用数学方法就可求得相位漂移参数,不需要增加硬件和软件设置,且计算量小;
[0049] (4)实现了QKD系统的长距离传输。

实施方案

[0054] 以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
[0055] 需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
[0056] 本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法采用扩展卡尔曼滤波算法来实时获取相位漂移参数值,利用相位与电压的关系,将最终的电压差通过反馈链路送达接收端的相位调制器,从而控制相位调制器相位的变化,达到实时的主动相位补偿。
[0057] 卡尔曼滤波算法是一个自回归过程,给定初始值后,就可以根据QKD系统的测量值实时的得出相位漂移参数,且运行时间短,精确度高,对效率也有很大提升,通过反馈链路实时反馈给对应的相位调制器,从而降低系统的误码率,增强系统稳定性。
[0058] 图1所示即为本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统的通信模型示意图。其中,信源即信息发送方,表示用户或第三方所产生的随机量子比特集合;前处理系统包含产生单光子源的量子态发生器和将消息变换成量子比特的量子调制器;信道是传输量子信号的量子信道与传输附加信息的经典信道组成的混合信道;后处理系统包含将量子比特转换为消息的量子译码器和量子态检测器;卡尔曼滤波算法用于实时获取相位漂移参数,将相位漂移结果反馈给接收端的控制系统,信宿为消息的接收者。
[0059] 参照图2,本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统包括发送端和接收端。
[0060] 发送端包括由半导体激光器LD和可调光衰减器A组成的准单光子源生成器、第一相位调制器PM1、第一偏振分束器PBS2和第二偏振分束器PBS2。由半导体激光器LD和可调光衰减器A组成的准单光子源生成器用于生成准单光子源,第一偏振分束器用于将单光子脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路L1和第二光子支路L2;第一相位调制器PM1用于对第一光子支路L1的第一光量子态进行相位编码调制;第二偏振分束器PBS2用于将第一光子支路L1的调制后的第一光量子态和第二光子支路L2的第二光量子态相干合成为脉冲序列,并传送至光纤传输。
[0061] 接收端包括第二相位调制器PM2、第三偏振分束器PBS3、第四偏振分束器PBS4、第一单光子探测器D1、第二单光子探测器D2和扩展卡尔曼滤波模块。第三偏振分束器PBS3用于将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路L1和第二光子支路L2;第二相位调制器PM2用于对第二光子支路L2的第二光量子态进行相位编码调制;第四偏振分束器PBS4用于将第一光子支路L1的第一光量子态和第二光子支路L2调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器D1或第二单光子探测器D2;第一单光子探测器D1和第二单光子探测器D2用于探测输出的单光子数,从而得到QKD系统的测量值;扩展卡尔曼滤波模块用于对第一单光子探测器D1和第二单光子探测器D2输出的单光子数和第二相位调制器的调制电压进行实时采样,实时获取相位漂移参数,并反馈至第二相位调制器PM2,以降低QKD系统误码率。
[0062] 需要说明的是,经过第四偏振分束器PBS4相干合成后,两个光量子态之间将产生相位差。此相位差将决定输出的光子是进入第一单光子探测器D1还是第二单光子探测器D2中。若相位差在0~π之间,则输出的光子进入第一单光子探测器D1,若相位差在-π~0之间,则输出的光子进入第二单光子探测器D2。
[0063] 在不使用扩展卡尔曼滤波时,QKD系统的工作流程如下:首先,发送端Alice通过半导体激光器LD和可调光衰减器A产生准单光子源,通过偏振分束器将光脉冲序列分解为两个正交的单光子支路,即支路1和支路2;接着,支路1通过第一相位调制器PM1进行调制,即用调制电压脉冲将编码序列加载到这条支路上,则第一相位调制器PM1将相位增加 这由发送端控制;另一条支路2则不需要调制;然后,支路1和支路2通过光纤传输到接收端Bob后,支路1不再进行调制,支路2通过第二相位调制器PM2进行调制,第二相位调制器PM2将相位增加 这由接收端控制;最后将两条支路进行相干合成,将输出的光子打在第一单光子探测器D1或第二单光子探测器D2上。
[0064] 也就是说,在接收端Bob处,相互干涉支路的路径分别为:支路1:LD—A—PBS1—L1—PM1—PBS2—光纤—PBS3—M2—PBS4;光路2:LD—A—PBS1—M1—PBS2—光纤—PBS3—L2—PM2—PBS4,以上是一次单光子密钥分发的过程。
[0065] 在理想情况下,只需发送端和接收端的相位调制器PM1、PM2相位差和单光子探测器D1、D2最终输出的单光子数即得到干涉结果。但在实际情况下,外部环境温度的变化,会导致光纤长度产生变化,引起单光子干涉仪臂长产生不对称。此时两路正交偏振的光子脉冲走的路程也不再相同,QKD系统不可避免会发生扰动,产生新的相位差。QKD系统的干涉对比度随之降低,导致系统稳定性变差,引起误码。这个额外的相位差即称为相位漂移。
[0066] 因此,为改善相位漂移,QKD系统中通过扩展卡尔曼滤波模块进行数据采样,实时获取相位漂移参数,并反馈至第二相位调制器,以对QKD系统进行补偿,从而克服相位漂移带来的误差。
[0067] 扩展卡尔曼滤波适用于对实时性要求较高的系统,分为时间更新和量测更新两个阶段,主要由五个核心方程实现。本发明将扩展卡尔曼滤波运用于QKD系统,进行采样完成后,可根据扩展卡尔曼滤波递推算法的特性,实时的获取相位漂移参数,以克服QKD系统相位漂移造成的误码问题。
[0068] 参照图3,本发明的利用卡尔曼滤波降低QKD系统误码率的方法包括下步骤:
[0069] 步骤S1、通过由半导体激光器和可调光衰减器组成的准单光子源生成器生成准单光子源。
[0070] 具体地,所生成的准单光子源即为QKD系统的信源部分。
[0071] 步骤S2、通过第一偏振分束器将光脉冲序列分解为两个正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第一相位调制器对第一光子支路的第一光量子态进行相位编码调制;通过第二偏振分束器将第一光子支路的调制后的第一光量子态和第二光子支路的第二光量子态相干合成为脉冲序列,并传送至光纤传输。
[0072] 其中,采用第一相位调制器进行调制时,用调制电压脉冲将编码序列加载到第一光子支路上,将发送端的第一相位调制器PM1调制电压固定为V1,此时对应相位 作为接收端的参考相位,并设定V1=0, 需要说明的是,相位偏移量是 这是一个过程量,是由扫描点处相位减去初始相位得到的,而相位 是一个参考相位,就是上述的初始相位。将 设置为0V,可以减少计算,使扫描点后数据经卡尔曼滤波过得到的相位值就是我们要求得相位偏移参数是
[0073] 步骤S3、通过第三偏振分束器将从光纤接收的脉冲序列分解为正交的第一光量子态和第二光量子态,并分别传送至第一光子支路和第二光子支路;通过第二相位调制器对第二光子支路的第二光量子态进行相位编码调制;通过第四偏振分束器将第一光子支路的第一光量子态和第二光子支路调制后的第二光量子态进行相干合成,并将输出的光子送入第一单光子探测器或第二单光子探测器。
[0074] 其中,在光纤传输过程中,由于环境变化导致单光子干涉仪的臂长不对称,故出现了噪声干扰。
[0075] 步骤S4、以至少一个调制周期的相位范围对第二相位调制器的调制电压进行逐点扫描,从最小电压Nmin一直扫描到最大电压Nmax,在扫描的每个调制电压Vi上都进行N个光脉冲的计数累计,并记录该调制电压点对应的光子累计数值,;当完成一个调制周期上的所有电压点的扫描后,得到一组电压单光子数。
[0076] 步骤S5、根据电压单光子数和QKD系统的干涉输出方程进行数学建模得到系统方程和量测方程,再利用扩展卡尔曼滤波算法进行计算,以得到某时刻的相位漂移参数。
[0077] 具体地,在相位调制器PM1、PM2产生相位差 和环境影响产生的相位漂移 共同作用下,得出如下的干涉输出结果:
[0078]
[0079] 其中,Nout是单光子输出计数值,Nmax是周期(0~2π)内最大单光子输出值,Nmin是周期(0~2π)内最小单光子输出值。公式(1)即为干涉输出方程。
[0080] 通过控制相位调制器上的调制电压来获取相位变化值 二者关系为:
[0081]
[0082] 其中,Vhalf为相位调制器半波电压,Vi为外加调制电压。
[0083] 相位漂移导致的系统误码率表示为:
[0084]
[0085] 可见,误码率由Nmax、Nmin和 共同决定。
[0086] 因此,基于QKD系统,由于干涉输出方程已知,只需对其N个随机调制电压的相位点进行扫描,得出每个点对应的单光子输出计数值和相位调制器的调制电压V,即可得出扩展卡尔曼滤波算法需要的测量值,再进行数学建模以得到系统方程和量测方程,从而求得扩展卡尔曼滤波算法过程中需要的所有条件。因为扩展卡尔曼是递推算法,所以给定初值就可用软件编程,实时获取相位漂移参数,且其运行时间可达到微秒级别。
[0087] 如图4所示,卡尔曼滤波是一个自回归的估计算法,主要分为两个阶段:时间更新(预测)和量测更新(修正)。其中,Xk为系统状态,Zk为已知的量测序列,Vk为均值为0,Rk是量测噪声方差。对于此QKD系统而言,有三个待估计值,分别为Nmax、Nmin、 则系统状态向量为一个矩阵,
[0088] 图4中 为K-1时刻的状态估计值,通过时间更新阶段后,得到K-1时刻对K时刻的预测估计值,即图4中的 Zk为量测状态向量Nout,而对应的量测控制量为调制电压V。
[0089] 因系统为动态系统,且为逐点进行扫描,则对其预测过程为当前时刻的值等于前一时刻的值,首先对其进行建模过程:
[0090] 系统方程f为:
[0091] 量测方程h为:
[0092]
[0093] 对于此系统而言:系统状态向量为: 量测状态向量为:Z=Nout,量测控制量为:V
[0094] 因其量测方程为非线性方程,首先对其线性化,即在K-1时刻对Nout进行泰勒级数展开,并取其前两项,可得到系统矩阵F和量测矩阵H。
[0095] 系统Jacobian矩阵
[0096] 量测Jacobian矩阵
[0097] 其中:
[0098]
[0099]
[0100] 将已知采样数据值结合公式4、5、6、7代入扩展卡尔曼滤波的5个核心方程(8)-(12):
[0101] 预测方程:
[0102] 预测协方差方程:
[0103] 卡尔曼增益:
[0104] 滤波方程:
[0105] 滤波协方差:Q(k|k)=[I-KkHk]Q(k|k-1)[I-KkHk]T+KkRkKkT  (12)[0106] 可得出最终的 值,将 值通过反馈链路送达接收端的第二相位调制器PM2,从而控制相位调制器相位的变化,达到实时相位补偿,从而降低系统误码率。
[0107] 步骤S6、若 则将相位漂移参数值φh通过反馈链路送达接收端的第二相位调制器PM2,以进行相位漂移的实时主动补偿;若 不作处理。
[0108] 具体地,若 则说明有相位漂移问题的存在,需将相位漂移参数值通过反馈链路送达接收端的第二相位调制器PM2,经电压控制第二相位调制器PM2及其半波电压来调制相位变化,完成实时主动补偿,从而降低系统误码率。若 则说明光纤传输过程中未出现相位漂移问题。
[0109] 综上所述,本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统及方法减少了获取相位漂移参数的运算量和运行时间,加快了相位漂移参数曲线的收敛速度,实现了实时获取相位漂移参数,收敛速度快,效率高;提高了QKD系统的稳定性,降低了误码率;只采用数学方法就可求得相位漂移参数,不需要增加硬件和软件设置,且计算量小;实现了QKD系统的长距离传输。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
[0110] 上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

附图说明

[0050] 图1显示为本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统的通信模型结构示意图;
[0051] 图2显示为本发明的基于扩展卡尔曼滤波降低QKD系统误码率的系统的结构示意图;
[0052] 图3显示为本发明的利用卡尔曼滤波降低QKD系统误码率的方法的流程图;
[0053] 图4显示为扩展卡尔曼滤波的原理示意图。
版权所有:盲专网 ©2023 zlpt.xyz  蜀ICP备2023003576号